×

zbMATH — the first resource for mathematics

The exterior nonstationary problem for the Navier-Stokes equations. (English) Zbl 0237.35074

MSC:
35Q30 Navier-Stokes equations
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
35B40 Asymptotic behavior of solutions to PDEs
35K60 Nonlinear initial, boundary and initial-boundary value problems for linear parabolic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Leray, J., Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’Hydrodynamique.J. Math. Pures Appl., 9 (1933), 1–82; Les problèmes non linéaires.Enseignement Math., 35 (1936), 139–151. · Zbl 0006.16702
[2] Finn, R., On steady-state solutions of the Navier-Stokes partial differential equations.Arch. Rational Mech. Anal., 3 (1959) 381–396. · Zbl 0104.42305 · doi:10.1007/BF00284188
[3] –, Estimates at infinity for stationary solutions of the Navier-Stokes equations.Bull. Math. Soc. Sci. Math. Phys. R.P.R., 3 (51), (1959), 387–418.
[4] –, On the steady-state solutions of the Navier-Stokes equations, III,Acta Math., 105 (1961), 197–244. · Zbl 0126.42203 · doi:10.1007/BF02559590
[5] –, On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems.Arch. Rational Mech. Anal., 19 (1965), 363–406. · Zbl 0149.44606 · doi:10.1007/BF00253485
[6] –, Stationary solutions of the Navier-Stokes equations.Proc. Symp. Appl. Math., 19, Amer. Math. Soc., Providence, 1965. · Zbl 0148.21602
[7] –, An energy theorem for viscous fluid motions.Arch. Rational Mech. Anal., 6 (1960), 371–381. · Zbl 0096.41303 · doi:10.1007/BF00276169
[8] Graffi, D., Sul teorema di unicità nella dinamica dei fluidi.Annali di Mat. 50 (1960), 379–388. · Zbl 0102.41103 · doi:10.1007/BF02414524
[9] Serrin, J., The initial value problem for the Navier-Stokes equations.Nonlinear problems, edited by R. E. Langer. The Univ. of Wisconsin Press, Madison 1963. · Zbl 0115.08502
[10] Ladyzhenskaya, O. A.,The mathematical theory of viscous incompressible flow. Second Edition. Gordon and Breach New York 1969. · Zbl 0184.52603
[11] Kiselev, A. A. &Ladyzhenskaya, O. A., On the existence and uniqueness of the solution of the nonstationary problem for a viscous incompressible fluid.Izv. Akad. Nauk SSSR, 21 (1957), 655–680.
[12] Agmon, S.,Lectures on elliptic boundary value problems. Van Nostrand, Princeton, N.J. 1965. · Zbl 0142.37401
[13] Hopf, E., Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen.Math. Nachr., 4 (1951), 213–231. · Zbl 0042.10604
[14] Oseen, C. W.,Neuere Methoden und Ergebnisse in der Hydrodynamik. Akademisce Verlagsgesellschaft m. b. H., Leipzig, 1927. · JFM 53.0773.02
[15] Heywood, J. G., On stationary solutions of, the Navier-Stokes equations as limits of nonstationary solutions.Arch. Rational Mech. Anal., 37 (1970), 48–60. · Zbl 0194.41402 · doi:10.1007/BF00249501
[16] Smith, D. R., Estimates at infinity for stationary solutions of the Navier-Stokes equations in two dimensions.Arch. Rational Mech. Anal., 20 (1965), 341–372. · Zbl 0149.44701 · doi:10.1007/BF00282357
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.