Haskins, L.; Gudder, S. Height on posets and graphs. (English) Zbl 0238.06002 Discrete Math. 2, 357-382 (1972). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 13 Documents MSC: 06A06 Partial orders, general 05C20 Directed graphs (digraphs), tournaments PDF BibTeX XML Cite \textit{L. Haskins} and \textit{S. Gudder}, Discrete Math. 2, 357--382 (1972; Zbl 0238.06002) Full Text: DOI References: [1] Benado, M., la theorie des multitreillis et son rôle en algèbre et geometrie, Publ. Sci. Univ. Alger A.. Publ. Sci. Univ. Alger A., Math. Rev., 27, 2447-58 (1964) [2] Birkhoff, G., Lattice theory (1967), Am. Math. Soc: Am. Math. Soc Providence · Zbl 0126.03801 [3] Fuchs, E., Isomorphismus der Kardinalpotenzen, Arch. Math., 1, 83-93 (1965), Math. Rev. 33, 5525. · Zbl 0132.26002 [4] Harary, F.; Norman, R.; Cartwright, D., Structural models (1965), Wiley: Wiley New York · Zbl 0139.41503 [5] Haskins, I.; Gudder, S., Semimodular posets and the Jordan - Dedikind chain condition, Proc. Am. Math. Soc., 28, 395-396 (1971) · Zbl 0231.06014 [6] Klarner, D., The number of graded partially ordered sets, J. Combinatorial Theory, 6, 12-19 (1969) · Zbl 0169.32401 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.