×

Some remarks on the Lüroth expansion. (English) Zbl 0238.10036


MSC:

11B83 Special sequences and polynomials
11K16 Normal numbers, radix expansions, Pisot numbers, Salem numbers, good lattice points, etc.
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] W. Feller: An introduction to probability theory and its apphcations. Vol. I., 2nd, Wiley, New York, 1957. · Zbl 0077.12201
[2] J. Galambos: The ergodic properties of the denominators in the Oppenheim expansion of real numbers into infinite series of rationals. Quart. J. Math. (Oxford) (2), 21 (1970), 177-191. · Zbl 0198.38104 · doi:10.1093/qmath/21.2.177
[3] J. Galambos: On the speed of convergence of the Oppenheim series. Acta Arith., 19 (1971), 335-342. · Zbl 0226.10053
[4] L. Holzer: Zur Bestimmung des Lebesgueschen Masses linearer Punktmengen, deren Elemente durch systematische Entwicklungen gegeben sind. Sitzungsberichte Akad. der Wissensch. in Wien, Mat.-Naturwiss., 137 (1928), 421-453. · JFM 54.0289.04
[5] H. Jager, C. deVroedt: Lüroth series and their ergodic properties. Nederl. Akad. Wet., Proc. Ser. A, 72 (1969), 31-42. · Zbl 0167.32201
[6] O. Perron: Irrationalzahlen. 2nd, Chelsea, New York, 1948. · JFM 65.0192.02
[7] T. Šalát: Zur metrischen Theorie der Lürothschen Entwicklungen der reellen Zahlen. Czechosl. Math. J. 18 (93) (1968), 489-522. · Zbl 0162.34703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.