×

zbMATH — the first resource for mathematics

Éléments unipotents et sous-groupes paraboliques de groupes réductifs. I. (French) Zbl 0238.20055

MSC:
20G25 Linear algebraic groups over local fields and their integers
20G30 Linear algebraic groups over global fields and their integers
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Borel, A.: Linear algebraic groups. Notes by H. Bass New York: Benjamin 1969. · Zbl 0186.33201
[2] Borel, A., Tits, J.: Groupes réductifs, Publ. math. I.H.E.S.27, 55-150 (1965) · Zbl 0145.17402
[3] ?: Compléments, ibid. (à paraître).
[4] Borel, A., Tits, J.: On ?abstract? homomorphisms of simple algebraic groups. Proceedings of the Bombay Colloquium on Algebraic Geometry, 75-82 (1968).
[5] Morozov, V.V.: Démonstration du théorème de régularité Usp. M. NaukXI, fasc. 5, 191-194 (1956).
[6] Platonov, V.P.: Proof of the finiteness hypothesis for solvable subgroups of algebraic groups. Sibirskii M. J.X, 1084-1090 (1969). · Zbl 0182.04702
[7] Rosenlicht, M.: Questions of rationality for solvable algebraic groups over nonperfect fields. Annali di Mat. (IV)61, 97-120 (1963). · Zbl 0126.16901 · doi:10.1007/BF02412850
[8] Springer, T.A., Steinberg, R.: Conjugacy classes, Seminar on algebraic groups and related finite groups, part E. 100p., Springer Lecture Notes131 (1969).
[9] Steinberg, R.: Automorphisms of finite linear groups. Canadian J. M.12, 606-615 (1960). · Zbl 0097.01703 · doi:10.4153/CJM-1960-054-6
[10] Tits, J.: Groupes semi-simples isotropes. Coll. sur la théorie des groupes algébriques. Bruxelles 1962, 137-147.
[11] Tits, J.: Homomorphismes et automorphismes ?abstraits? de groupes algébriques et arithmétiques. Proceedings Int. Congress of Math. Nice 1970 (à paraître).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.