×

zbMATH — the first resource for mathematics

Unitary representations of solvable Lie groups. (English) Zbl 0238.22010

MSC:
22E45 Representations of Lie and linear algebraic groups over real fields: analytic methods
22E25 Nilpotent and solvable Lie groups
43A65 Representations of groups, semigroups, etc. (aspects of abstract harmonic analysis)
46L10 General theory of von Neumann algebras
47L50 Dual spaces of operator algebras
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] L. AUSLANDER et B. KOSTANT , Polarization and unitary representations of solvable Lie groups (to appear). Zbl 0233.22005 · Zbl 0233.22005
[2] L. AUSLANDER et C. C. MOORE , Unitary representations of solvable Lie groups (Memoirs of the American Mathematical Society, No. 62, 1966 ). MR 34 #7723 | Zbl 0204.14202 · Zbl 0204.14202
[3] P. BERNAT , Sur les représentations unitaires des groupes de Lie résolubles (Ann. scient. Éc. Norm. Sup., vol. 82, 1965 , p. 37-99). Numdam | MR 33 #2763 | Zbl 0138.07302 · Zbl 0138.07302
[4] R. J. BLATTNER , On induced representations (Amer. J. Math., vol. 83, 1961 , p. 79-98). MR 23 #A2757 | Zbl 0122.28405 · Zbl 0122.28405
[5] N. BOURBAKI , Intégration , Chap. VII-VIII (Act. Sci. Ind., n^\circ 1306, Hermann, Paris, 1963 ). MR 31 #3539 | Zbl 0156.03204 · Zbl 0156.03204
[6] C. CHEVALLEY , Théorie des groupes de Lie ; vol. II: Groupes algébriques (Act. Sci. Ind., n^\circ 1152, Hermann, Paris, 1951 ); vol. III: Théorèmes généraux sur les algèbres de Lie (Ibid., n^\circ 1126, Hermann, Paris, 1953 ). · Zbl 0054.01303
[7] J. DIXMIER , Algèbres quasi-unitaires (Comment. Math. Helv., vol. 26, 1952 , p. 275-322). MR 14,660b | Zbl 0047.35601 · Zbl 0047.35601
[8] J. DIXMIER , Sur les représentations unitaires des groupes de Lie nilpotents , I (Amer. J. Math., vol. 83, 1959 , p. 160-170). MR 21 #2705 | Zbl 0121.33604 · Zbl 0121.33604
[9] J. DIXMIER , Sur les représentations unitaires des groupes de Lie nilpotents , III (Can. J. Math., vol. 10, 1958 , p. 321-348). MR 20 #1929 | Zbl 0100.32401 · Zbl 0100.32401
[10] J. DIXMIER , Sur le revêtement universel d’un groupe de Lie de type I (C. R. Acad. Sc., t. 252, 1961 , p. 2805-2806). MR 24 #A3241 | Zbl 0116.02301 · Zbl 0116.02301
[11] J. DIXMIER , Représentations induites holomorphes des groupes résolubles algébriques (Bull. Soc. math. Fr., vol. 94, 1966 , p. 181-206). Numdam | MR 34 #7724 | Zbl 0204.44101 · Zbl 0204.44101
[12] J. DIXMIER , Les C*-algèbres et leurs représentations , Gauthier-Villars, Paris, 1964 . MR 30 #1404 | Zbl 0152.32902 · Zbl 0152.32902
[13] J. DIXMIER , Les algèbres d’opérateurs dans l’espace hilbertien (2nd ed.), Gauthier-Villars, Paris, 1969 . Zbl 0175.43801 · Zbl 0175.43801
[14] J. DIXMIER , Sur la représentation régulière d’un groupe localement compact connexe (Ann. scient. Éc. Norm. Sup., vol. 2, 1969 , p. 423-436). Numdam | MR 41 #5553 | Zbl 0186.46304 · Zbl 0186.46304
[15] M. DUFLO , Caractères des groupes et des algèbres de Lie résolubles (Ann. scient. Éc. Norm. Sup., vol. 3, 1970 , p. 23-74). Numdam | MR 42 #4672 | Zbl 0223.22016 · Zbl 0223.22016
[16] E. G. EFFROS , Transformation groups and C*-algebras (Ann. Math., vol. 81, 1965 , p. 38-55). MR 30 #5175 | Zbl 0152.33203 · Zbl 0152.33203
[17] J. GLIMM , Locally compact transformation groups (Trans. Amer. Math. Soc., vol. 101, 1961 , p. 124-138). MR 25 #146 | Zbl 0119.10802 · Zbl 0119.10802
[18] P. R. HALMOS , The decomposition of measures (Duke Math. J., vo. 8, 1941 , p. 386-392). Article | MR 3,50e | Zbl 0025.14901 | JFM 67.0166.01 · Zbl 0025.14901
[19] S. HELGASON , Differential geometry and symmetric spaces , Academic Press, 1962 . MR 26 #2986 | Zbl 0111.18101 · Zbl 0111.18101
[20] G. HOCHSCHILD , The structure of Lie groups , Holden-Day, 1965 . MR 34 #7696 | Zbl 0131.02702 · Zbl 0131.02702
[21] R. HOWE , On the representations of discrete, finitely generated, torsion free nilpotent groups (to appear). · Zbl 0387.22005
[22] A. A. KIRILLOV , Unitary representations of nilpotent Lie groups (russian) (Usp. Mat. Nauk., 17, 1962 , p. 57-110). MR 25 #5396 | Zbl 0106.25001 · Zbl 0106.25001
[23] G. W. MACKEY , Induced representations of locally compact groups , I (Ann. Math., vol. 55, 1952 , p. 101-139). MR 13,434a | Zbl 0046.11601 · Zbl 0046.11601
[24] G. W. MACKEY , Induced representations of locally compact groups , II (Ann. Math., vo. 58, 1953 , p. 193-221). MR 15,101a | Zbl 0051.01901 · Zbl 0051.01901
[25] G. W. MACKEY , Unitary representations of group extensions , I (Acta Math., vol. 99, 1958 , p. 265-311). MR 20 #4789 | Zbl 0082.11301 · Zbl 0082.11301
[26] G. W. MACKEY , Induced representations and normal subgroups (Proc. of the Int. Symp. on linear spaces, Jerusalem, 1960 , p. 319-326). MR 25 #3118 | Zbl 0118.11401 · Zbl 0118.11401
[27] L. PUKANSZKY , On a theorem of Mautner (Acta Sci. Math., vol. 15, 1954 , p. 145-148). MR 15,632h | Zbl 0055.10402 · Zbl 0055.10402
[28] L. PUKANSZKY , On the theory of quasi unitary algebras (Acta Sci. Math., vol. 16, 1955 , p. 103-121). MR 17,515a | Zbl 0064.36701 · Zbl 0064.36701
[29] L. PUKANSZKY , Leçons sur les représentations des groupes , Dunod, Paris, 1966 . Zbl 0152.01201 · Zbl 0152.01201
[30] L. PUKANSZKY , On the characters and Plancherel formula of nilpotent groups (J. Funct. Anal., vol. 1, 1967 , p. 255-280). MR 37 #4236 | Zbl 0165.48603 · Zbl 0165.48603
[31] L. PUKANSZKY , On the unitary representations of exponential groups (J. Funct. Anal., vol. 2, 1968 , p. 73-113). MR 37 #4205 | Zbl 0172.18502 · Zbl 0172.18502
[32] L. PUKANSZKY , Characters of algebraic solvable groups (J. Funct. Anal., vol. 3, 1969 , p. 435-491). MR 40 #1539 | Zbl 0186.20004 · Zbl 0186.20004
[33] L. PUKANSZKY , Sur la représentation régulière des groupes de Lie résolubles connexes (C. R. Acad. Sc., t. 268, 1969 : I, p. 1172-1173; II, p. 1077-1079). MR 39 #7445b | Zbl 0186.46303 · Zbl 0186.46303
[34] I. E. SEGAL , An extension of Plancherel’s formula to separable, unimodular groups (Ann. Math., vol. 52, 1950 , p. 272-292). MR 12,157f | Zbl 0041.36312 · Zbl 0041.36312
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.