×

zbMATH — the first resource for mathematics

Deforming cohomology classes. (English) Zbl 0238.32011

MSC:
32C15 Complex spaces
32C35 Analytic sheaves and cohomology groups
32G13 Complex-analytic moduli problems
14D20 Algebraic moduli problems, moduli of vector bundles
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Jacques Frisch, Points de platitude d’un morphisme d’espaces analytiques complexes, Invent. Math. 4 (1967), 118 – 138 (French). · Zbl 0167.06803
[2] Roger Godement, Topologie algébrique et théorie des faisceaux, Actualit’es Sci. Ind. No. 1252. Publ. Math. Univ. Strasbourg. No. 13, Hermann, Paris, 1958 (French). · Zbl 0080.16201
[3] Hans Grauert, Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen, Inst. Hautes Études Sci. Publ. Math. 5 (1960), 64 (German). · Zbl 0158.32901
[4] Ph. A. Griffiths, The extension problem for compact submanifolds of complex manifolds. I. The case of a trivial normal bundle, Proc. Conf. Complex Analysis (Minneapolis, 1964) Springer, Berlin, 1965, pp. 113 – 142.
[5] A. Grothendieck, Éléments de géométrie algébrique, Publ. Inst. Hautes Études Sci. Publ. Math. 1960-1970. · Zbl 0203.23301
[6] K. Kodaira, On stability of compact submanifolds of complex manifolds, Amer. J. Math. 85 (1963), 79 – 94. · Zbl 0173.33101
[7] Oswald Riemenschneider, Über die Anwendung algebraischer Methoden in der Deformationstheorie komplexer Räume, Math. Ann. 187 (1970), 40 – 55 (German). · Zbl 0196.09701
[8] John J. Wavrik, Obstructions to the existence of a space of moduli, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 403 – 414.
[9] John J. Wavrik, A theorem of completeness for families of compact analytic spaces, Trans. Amer. Math. Soc. 163 (1972), 147 – 155. · Zbl 0205.38803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.