×

zbMATH — the first resource for mathematics

Summation formulas and band-limited signals. (English) Zbl 0238.42009

MSC:
42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
41A05 Interpolation in approximation theory
30E05 Moment problems and interpolation problems in the complex plane
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. P. BOAS, JR., Entire functions, Academic Press, New York, 1954. · Zbl 0058.30201
[2] J. L. BROWN, JR., On the error in reconstructing a non-bandlimited function by mean of the bandpass sampling theorem, J. Math. Analysis Appl. 18 (1967), 75-84. · Zbl 0167.47804 · doi:10.1016/0022-247X(67)90183-7
[3] L. L. CAMPBELL, Sampling theorem for the Fourier transform of a distribution wit bounded support, SIAM J. Appl. Math. 16 (1968), 626-636. JSTOR: · Zbl 0184.43802 · doi:10.1137/0116051 · links.jstor.org
[4] D. JAGERMAN, Bounds for truncation error of the sampling expansion, SIAM J. Appl Math. 14 (1966), 714-723. JSTOR: · Zbl 0221.65200 · doi:10.1137/0114060 · links.jstor.org
[5] W. MAGNUS, F. OBERHETTINGER, Formeln und Satze fur die speziellen Funktionen de mathematischen Physik, 2d ed., Springer, Berlin-Gottingen-Heidelberg, 1948. · Zbl 0039.29701
[6] E. C. TITCHMARSH, Introduction to the theory of Fourier integrals, Oxford, 1937 · Zbl 0017.40404
[7] P. WEISS, An estimate of the error arising from misapplication of the sampling theorem, Notices Amer. Math. Soc. 10 (1963), 351.
[8] A. B. BHATIA AND K. S. KRISHNAN, Light-scattering in homogeneous media regarde as reflexion from appropriate thermal elastic waves, Proc. Roy. Soc. London. Ser. A. 192 (1948), 181-194. · Zbl 0030.09502 · doi:10.1098/rspa.1948.0004
[9] K. S. KRISHNAN, On the equivalence of certain infinite series and the correspondin integrals, J. Indian Math. Soc. (N. S.) 12 (1948), 79-88. · Zbl 0032.21202
[10] H. POLLARD AND O. SHISHA, Variations on the binomial series, Amer. Math. Monthl 79 (1972), 495-499. JSTOR: · Zbl 0252.42018 · doi:10.2307/2317567 · links.jstor.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.