×

M-ideals in complex function spaces and algebras. (English) Zbl 0238.46054


MSC:

46E15 Banach spaces of continuous, differentiable or analytic functions
46J10 Banach algebras of continuous functions, function algebras
46J20 Ideals, maximal ideals, boundaries
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] E. M. Alfsen,Compact convex sets and boundary integrals, Ergebnisse der Math., 57, Springer Verlag, 1971. · Zbl 0209.42601
[2] E. M. Alfsen and E. Effros,Structure in real Banach spaces, Ann. of Math., to appear. · Zbl 0248.46019
[3] E. M. Alfsen and B. Hirsberg, On dominated extensions in linear subspaces of C \(\mathbb{R}\)(X), Pacific J. Math.36 (1971), 567–584. · Zbl 0228.46049
[4] L. Asimov,Decomposable compact convex sets and peak sets for function spaces, Proc. Amer. Math. Soc.25 (1970), 75–79. · Zbl 0192.46802
[5] F. Cunningham Jr.,L-structure in L-spaces, Trans. Amer. Math. Soc.95 (1960), 274–299. · Zbl 0094.30402
[6] N. Dunford and J. Schwarz,Linear Operators, Part I, Interscience Publishers, New York.
[7] A. J. Ellis,On split faces and function algebras, Math Ann.195 (1972), 159–166. · Zbl 0215.48305
[8] T. W. Gamelin,Uniform algebras, Prentice Hall Series. · Zbl 0213.40401
[9] B. Hirsberg,A measure theoretic characterization of parallel and split faces and their connections with function spaces and algebras, Univ of Århus, Math. Inst. Various Publication Series No. 16, 1970. · Zbl 0222.46025
[10] B. Hirsberg,Note sur, les représentations intégrales des formes linéaires complexes, C. R. Acad. Sci., to appear.
[11] O. Hustad,A norm preserving complex Choquet Theorem, Math (Scand.29 (1971). · Zbl 0245.46031
[12] R. R. Phelps,Lectures on Choquet’s theorem, Van Nostrand, New York, 1966. · Zbl 0135.36203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.