zbMATH — the first resource for mathematics

A contribution to the parameter estimation of a certain class of dynamical systems. (English) Zbl 0238.62104

62M20 Inference from stochastic processes and prediction
93A10 General systems
Full Text: EuDML
[1] L. A. Zadeh C. A. Desoer: Linear system theory. McGraw-Hill, New York 1963.
[2] R. E. Kalman: Mathematical description of linear dynamical systems. Journal SIAM Control 1 (1963), 2, 152-192. · Zbl 0145.34301
[3] K. Ogata: State space analysis of control systems. Prentice Hall, N. J. 1967. · Zbl 0178.09801
[4] R. W. Brockett: Poles, zeros and feedback: State space interpretation. IEEE Trans. Aut. Control AC-10 (1965), 2, 129-135.
[5] E. Kreindler P. E. Sarachick: On the concepts of controllability and observability of linear systems. IEEE Trans. Aut. Control AC-9 (1964), 2, 129-136.
[6] J. H. Milsum: Biological control systems analysis. McGraw-Hill, New York 1966.
[7] M. Berman: Kinetic modeling in physiology. FEBS Letters 2 (1969, March), S56- S57.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.