×

Resolvente zum Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. I. (German) Zbl 0239.10014


MSC:

11F12 Automorphic forms, one variable
11F99 Discontinuous groups and automorphic forms
30F35 Fuchsian groups and automorphic functions (aspects of compact Riemann surfaces and uniformization)
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Beardon, A. F.: The exponent of convergence of Poincar? series. Proc. London math. Soc., III. Ser.18, 461-483 (1968). · Zbl 0162.38801
[2] Beardon, A. F.: Inequalities for certain Fuchsian groups. Acta math.127, 221-258 (1971). Correction, to appear. · Zbl 0235.30022
[3] Bers, L.: Completeness theorems for Poincar? series in one variable. Proceedings of the International Symposium on Linear Spaces, held at the Hebrew University of Jerusalem, July 5-12, 1960, S. 88-100. Jerusalem: Jerusalem Academic Press 1961.
[4] Bers, L.: Automorphic forms and Poincar? series for infinitely generated Fuchsian groups. Amer. J. Math.87, 196-214 (1965). · Zbl 0141.27502
[5] Burnside, W.: On a class of automorphic functions. Proc. London math. Soc.23, 49-88 (1891-1892). · JFM 24.0391.01
[6] Dieudonn?, J.: Treatise on analysis, Vol. II. New York, London: Academic Press 1970. · Zbl 0202.04901
[7] Drasin, D.: Cusp forms and Poincar? series. Amer. J. Math.90, 356-365 (1968). · Zbl 0169.10201
[8] Drasin, D., Earle, C. J.: On the boundedness of automorphic forms. Proc. Amer. math. Soc.19, 1039-1042 (1968). · Zbl 0169.10103
[9] Dunford, N., Schwartz, J. T.: Linear operators, Part II: Spectral theory. New York, London: Interscience Publishers 1963. · Zbl 0128.34803
[10] Earle, C. J.: A reproducing formula for integrable automorphic forms. Amer. J. Math.88, 867-870 (1966). · Zbl 0173.33303
[11] Earle, C. J.: Some remarks on Poincar? series. Compositio math.21, 167-176 (1969). · Zbl 0194.39202
[12] Ehrenpreis, L.: An eigenvalue problem for Riemann surfaces. Advances in the theory of Riemann surfaces. Proceedings of the 1969 Stony Brook Conference. Edited by L. V. Ahlfors et al., S. 131-140. Princeton, N. J.: Princeton University Press 1971.
[13] Elstrodt, J.: ?ber das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene bei Fuchsschen Gruppen zweiter Art. Dissertation, M?nchen 1970.
[14] Elstrodt, J.: Automorphe Eigenfunktionen elliptischer Differentialoperatoren in der Poincar?schen Halbebene. Diplomarbeit, M?nster 1964.
[15] Erd?lyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.: Higher transcendental functions. Vol. I. (Bateman Manuscript Project.). New York, Toronto, London: McGraw-Hill Book Co. 1953. · Zbl 0051.30303
[16] Faddeev, L. D.: Expansion in eigenfunctions of the Laplace operator on the fundamental domain of a discrete group on the Loba?evskii plane. Trans. Moscow math. Soc.17, 357-386 (1967). (Russische Originalarbeit: Trudy Moskov. mat. Ob??.17, 323-350 (1967).)
[17] Ford, L. R.: Automorphic functions. Second Edition. New York: Chelsea Publishing Co. 1951.
[18] Fricke, R.: ?ber die Poincar?schen Reihen der (?1)ten Dimension. Abhandlungen aus den Gebieten der Mathematik, Physik, Chemie und beschreibenden Naturwissenschaften. Festschrift zur Feier des siebzigsten Geburtstages von Richard Dedekind, S. 1-36. Braunschweig: Druck und Verlag von Friedrich Vieweg und Sohn 1901.
[19] Gel’fand, I. M., Graev, M. I., Pyatetskii-Shapiro, I. I.: Representation theory and automorphic functions. Philadelphia, London, Toronto: W. B. Saunders Co. 1969. (Russisches Original: Moskau: Nauka 1966.)
[20] Godement, R.: S?rie de Poincar? et Spitzenformen. S?minaire H. Cartan, 10e ann?e (1957/58), Expos? 10. Paris: Secr?tariat math?matique, Ecole Normale Sup?rieure 1958.
[21] Hecke, E.: ?ber die Bestimmung Dirichletscher Reihen durch ihre Funktional-gleichung. Math. Ann.112, 664-699 (1936). · JFM 62.1207.01
[22] Helgason, S.: Lie groups and symmetric spaces. Battelle rencontres. 1967 lectures in mathematics and physics. Edited by C. M. DeWitt and J. A. Wheeler, S. 1-71. New York, Amsterdam: W. A. Benjamin, Inc. 1968.
[23] Helgason, S.: A duality for symmetric spaces with applications to group representations. Advances Math.5, 1-154 (1970). · Zbl 0209.25403
[24] Hellwig, G.: Partielle Differentialgleichungen. Stuttgart: B. G. Teubner Verlagsgesellschaft 1960. · Zbl 0093.28601
[25] Johansson, S.: Zur Theorie der Konvergenz der Poincar?schen Reihen bei den Hauptkreisgruppen. ?fversigt af Finska Vetenskaps-Societetens F?rhandlingar, Ser. A, Matematik och Naturvetenskaper53 (15), 1-25 (1910-1911).
[26] K?the, G.: Die Randverteilungen analytischer Funktionen. Math. Z.57, 13-33 (1952). · Zbl 0047.35203
[27] Kra, I.: Eichler cohomology and the structure of finitely generated Kleinian groups. Advances in the theory of Riemann surfaces. Proceedings of the 1969 Stony Brook Conference. Edited by L. V. Ahlforset al., S. 225-263. Princeton, N. J.: Princeton University Press 1971. · Zbl 0216.09902
[28] Lehner, J.: Discontinuous groups and automorphic functions. Providence, R. I.: American Mathematical Society 1964. · Zbl 0178.42902
[29] Maa?, H.: ?ber eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen. Math. Ann.121, 141-183 (1949). · Zbl 0034.31702
[30] Maa?, H.: Die Differentialgleichungen in der Theorie der elliptischen Modulfunktionen. Math. Ann.125, 235-263 (1953). · Zbl 0053.05601
[31] Magnus, W., Oberhettinger, F.: Formeln und S?tze f?r die speziellen Funktionen der mathematischen Physik. Berlin: Springer 1943. · Zbl 0028.22102
[32] Magnus, W., Oberhettinger, F., Soni, R. P.: Formulas and theorems for the special functions of mathematical physics. Third enlarged edition. Berlin, Heidelberg, New-York: Springer 1966. · Zbl 0143.08502
[33] Metzger, T. A., Rao, K. V. Rajeswara: On integrable and bounded automorphic forms. I. Proc. Amer. math. Soc.28, 562-566 (1971). II. Proc. Amer. math. Soc.32, 201-204 (1972). · Zbl 0227.30024
[34] Petersson, H.: Zur analytischen Theorie der Grenzkreisgruppen. Teil I: Grenzkreisgruppen und Riemannsche Fl?chen; Theorie der Faktoren- und Multiplikatorsysteme komplexer Dimension. Math. Ann.115, 23-67 (1938). · Zbl 0017.30603
[35] Petersson, H.: Einheitliche Begr?ndung der Vollst?ndigkeitss?tze f?r die Poincar?schen Reihen von reeller Dimension bei beliebigen Grenzkreisgruppen von erster Art. Abh. math. Sem. Hansische Univ.14, 22-60 (1941). · Zbl 0025.04603
[36] Rao, K. V. Rajeswara: Fuchsian groups of convergence type and Poincar? series of dimension -2. J. Math. Mech.18, 629-644 (1969). · Zbl 0184.11301
[37] Rao, K. V. Rajeswara: Reproducing formulas for Poincar? series of dimension-2 and applications. Advances in the theory of Riemann surfaces. Proceedings of the 1969 Stony Brook Conference. Edited by L. V. Ahlforset al., S. 329-340. Princeton, N. J.: Princeton University Press 1971.
[38] Roelcke, W.: ?ber die Wellengleichung bei Grenzkreisgruppen erster Art. S.-ber. Heidelberger Akad. Wiss., math.-naturw. Kl. 1953/55, 4. Abh., 109 S. (1956).
[39] Roelcke, W.: Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene, I. Math. Ann.167, 292-337 (1966). · Zbl 0152.07705
[40] Roelcke, W.: Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene, II. Math. Ann.168, 261-324 (1967). · Zbl 0152.07705
[41] Selberg, A.: Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian math. Soc.20, 47-87 (1956). · Zbl 0072.08201
[42] Selberg, A.: Automorphic functions and integral operators. Seminars in analytic functions, Vol. 2, S. 152-161. Princeton, N. J.: Institute for Advanced Study 1957.
[43] Selberg, A.: Discontinuous groups and harmonic analysis. Proceedings of the International Congress of Mathematicians, Stockholm 1962, S. 177-189.
[44] Selberg, A.: On the estimation of Fourier coefficients of modular forms. Theory of numbers. Proceedings of Symposia in Pure Mathematics, Vol. VIII, S. 1-15. Providence R. I.: American Mathematical Society 1965. · Zbl 0142.33903
[45] Spilker, J.: Darstellung automorpher Formen durch Poincar?-Reihen. Math. Z.99, 216-234 (1967). · Zbl 0157.13603
[46] Stone, M. H.: Linear transformations in Hilbert space and their applications to analysis. New York: American Mathematical Society 1932. · Zbl 0005.40003
[47] Tsuji, M.: Potential theory in modern function theory. Tokyo: Maruzen Co. 1959. · Zbl 0087.28401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.