On some results of Atkin and Lehner. (English) Zbl 0239.10015


11F03 Modular and automorphic functions
11F12 Automorphic forms, one variable
20G05 Representation theory for linear algebraic groups
14H25 Arithmetic ground fields for curves
Full Text: DOI EuDML


[1] Atkin, A. O. L., Lehner, J.: Hecke operators on ?0(m). Math. Ann.185, 134-160 (1970). · doi:10.1007/BF01359701
[2] Baily, W., Borel, A.: Compactification of arithmetic quotients of bounded symmetric domains. Ann. of Math.84, 442-528 (1966). · Zbl 0154.08602 · doi:10.2307/1970457
[3] Casselman, W.: On abelian varieties with many endomorphisms and a conjecture of Shimura’s, Inventiones math.12, 225-236 (1971). · Zbl 0213.47303 · doi:10.1007/BF01418782
[4] Jacquet, H., Langlands, R. P.: Automorphic forms on GL(2). Berlin-Heidelberg-New York: Springer Lecture Notes, No.114, 1970. · Zbl 0236.12010
[5] Langlands, R. P.: Problems in the theory of automorphic forms, 18-86. In: Berlin-Heidelberg-New York: Springer Lecture Notes, No.170, 1970. · Zbl 0225.14022
[6] Miyake, T.: On automorphic forms onGL 2 and Hecke operators. Ann. of Math.94, 174-189 (1971). · Zbl 0215.37301 · doi:10.2307/1970741
[7] Ogg, A.: Functional equations of modular forms. Math. Ann.183, 337-340 (1969). · Zbl 0191.38102 · doi:10.1007/BF01350801
[8] Ogg, A.: On a convolution ofL-series. Inventiones math.7, 297-312 (1969). · Zbl 0205.50902 · doi:10.1007/BF01425537
[9] Rankin, R.: Contributions to the theory of Ramanujan’s function ?(n) and similar arithmetical functions. II. Proc. Camb. Phil. Soc.35, 357-372 (1939). · Zbl 0021.39202 · doi:10.1017/S0305004100021101
[10] Satake, I.: Theory of spherical functions on reductive algebraic groups overp-adic fields. Publications Mathematiques I.H.E.S. No. 18. · Zbl 0122.28501
[11] Weil, A.: Dirichlet series and automorphic forms. Berlin-Heidelberg-New York: Springer Lecture Notes. No.189, 1971. · Zbl 0218.10046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.