×

zbMATH — the first resource for mathematics

Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients. (English) Zbl 0239.35045

MSC:
35J20 Variational methods for second-order elliptic equations
35J65 Nonlinear boundary value problems for linear elliptic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Shmuel Agmon, Lectures on elliptic boundary value problems, Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr. Van Nostrand Mathematical Studies, No. 2, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965. · Zbl 0142.37401
[2] Haïm Brezis, Équations et inéquations non linéaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier (Grenoble) 18 (1968), no. fasc. 1, 115 – 175 (French). · Zbl 0169.18602
[3] Felix E. Browder, Nonlinear elliptic boundary value problems, Bull. Amer. Math. Soc. 69 (1963), 862 – 874. · Zbl 0127.31901
[4] Felix E. Browder, Nonlinear elliptic functional equations in nonreflexive Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 89 – 95. · Zbl 0135.17602
[5] Felix E. Browder, Nonlinear maximal monotone operators in Banach space, Math. Ann. 175 (1968), 89 – 113. · Zbl 0159.43901 · doi:10.1007/BF01418765 · doi.org
[6] Felix E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Nonlinear functional analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 2, Chicago, Ill., 1968) Amer. Math. Soc., Providence, R. I., 1976, pp. 1 – 308.
[7] Felix E. Browder, Existence theorems for nonlinear partial differential equations, Global Analysis (Proc. Sympos. Pure Math., Vol. XVI, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 1 – 60.
[8] Felix E. Browder, Nonlinear elliptic boundary value problems and the generalized topological degree, Bull. Amer. Math. Soc. 76 (1970), 999 – 1005. · Zbl 0201.18401
[9] Felix E. Browder, Existence theory for boundary value problems for quasilinear elliptic systems with strongly nonlinear lower order terms, Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971) Amer. Math. Soc., Providence, R.I., 1973, pp. 269 – 286.
[10] -, Nonlinear elliptic eigenvalue problems with strong lower order nonlinearities, Rocky Mountain Math. J. (to appear).
[11] Felix E. Browder and Peter Hess, Nonlinear mappings of monotone type in Banach spaces, J. Functional Analysis 11 (1972), 251 – 294. · Zbl 0249.47044
[12] Thomas Donaldson, Nonlinear elliptic boundary value problems in Orlicz-Sobolev spaces, J. Differential Equations 10 (1971), 507 – 528. · Zbl 0207.41501 · doi:10.1016/0022-0396(71)90009-X · doi.org
[13] Thomas K. Donaldson and Neil S. Trudinger, Orlicz-Sobolev spaces and imbedding theorems, J. Functional Analysis 8 (1971), 52 – 75. · Zbl 0216.15702
[14] Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, With the assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958. · Zbl 0084.10402
[15] A. Fougères, Opérateurs elliptiques du calcul des variations à coefficients très fortement non linéaires, C. R. Acad. Sci. Paris Sér. A-B 274 (1972), A763-A766. · Zbl 0248.47028
[16] Jean-Pierre Gossez, Opérateurs monotones non linéaires dans les espaces de Banach non réflexifs, J. Math. Anal. Appl. 34 (1971), 371 – 395 (French). · Zbl 0228.47040 · doi:10.1016/0022-247X(71)90119-3 · doi.org
[17] Jean-Pierre Gossez, On the range of a coercive maximal monotone operator in a nonreflexive Banach space, Proc. Amer. Math. Soc. 35 (1972), 88 – 92. · Zbl 0251.47050
[18] Jean-Pierre Gossez, On the subdifferential of a saddle function, J. Functional Analysis 11 (1972), 220 – 230. · Zbl 0254.26020
[19] Jean-Pierre Gossez, Boundary value problems for quasilinear elliptic equations with rapidly increasing coefficients, Bull. Amer. Math. Soc. 78 (1972), 753 – 758. · Zbl 0256.35037
[20] A. Granas, Sur la notion du degré topologique pour une certaine classe de transformations multivalentes dans les espaces de Banach, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 7 (1959), 191 – 194 (unbound insert) (French, with Russian summary). · Zbl 0087.32303
[21] A. Granas, Theorem on antipodes and theorems on fixed points for a certain class of multi-valued mappings in Banach spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 7 (1959), 271 – 275 (unbound insert) (English, with Russian summary). · Zbl 0089.11202
[22] Peter Hess, On nonlinear mappings of monotone type with respect to two Banach spaces, J. Math. Pures Appl. (9) 52 (1973), 13 – 26. · Zbl 0222.47019
[23] Peter Hess, A strongly nonlinear elliptic boundary value problem, J. Math. Anal. Appl. 43 (1973), 241 – 249. · Zbl 0267.35039 · doi:10.1016/0022-247X(73)90272-2 · doi.org
[24] M. A. Krasnosel\(^{\prime}\)skiĭ and Ja. B. Rutickiĭ, Convex functions and Orlicz spaces, Translated from the first Russian edition by Leo F. Boron, P. Noordhoff Ltd., Groningen, 1961.
[25] Jean Leray and Jacques-Louis Lions, Quelques résulatats de Višik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France 93 (1965), 97 – 107 (French). · Zbl 0132.10502
[26] Joram Lindenstrauss, On nonseparable reflexive Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 967 – 970. · Zbl 0156.36403
[27] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod; Gauthier-Villars, Paris, 1969 (French). · Zbl 0189.40603
[28] Wilhelmus Anthonius Josephus Luxemburg, Banach function spaces, Thesis, Technische Hogeschool te Delft, 1955.
[29] W. A. J. Luxemburg and A. C. Zaanen, Conjugate spaces of Orlicz spaces, Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 217 – 228. · Zbl 0072.12301
[30] George J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J. 29 (1962), 341 – 346. · Zbl 0111.31202
[31] R. T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific J. Math. 33 (1970), 209 – 216. · Zbl 0199.47101
[32] R. T. Rockafellar, Local boundedness of nonlinear, monotone operators, Michigan Math. J. 16 (1969), 397 – 407. · Zbl 0175.45002
[33] R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149 (1970), 75 – 88. · Zbl 0222.47017
[34] M. I. Višik, Quasi-linear strongly elliptic systems of differential equations of divergence form, Trudy Moskov. Mat. Obšč. 12 (1963), 125 – 184 (Russian).
[35] M. I. Višik, On the solvability of the first boundary-value problem for quasi-linear equations with coefficients of rapid growth in Orlicz classes, Dokl. Akad. Nauk SSSR 151 (1963), 758 – 761 (Russian).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.