×

zbMATH — the first resource for mathematics

An intrinsic characterization of fibre bundles associated with homogeneous spaces defined by Lie group automorphisms. (English) Zbl 0239.55018

MSC:
55R10 Fiber bundles in algebraic topology
57R15 Specialized structures on manifolds (spin manifolds, framed manifolds, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. Helgason, Differential Geometry and Symmetric Spaces. Academic Press, New York-London 1962. · Zbl 0111.18101
[2] S. Kobayashi andK. Nomizu, Foundations of Differential Geometry I. Interscience Publishers, New York-London 1963. · Zbl 0119.37502
[3] O. Loos, Spiegelungsräume und homogene symmetrische Räume. Math. Zeitschr.99 (1967) 141–170. · Zbl 0148.17403
[4] O. Loos, Lie transformation groups of Banach manifolds. J. Diff. Geometry5 (1971), 175–185. · Zbl 0211.26802
[5] R. S. Palais: A global formulation of the Lie theory of transformation groups. Memoirs Amer. Math. Soc. No.22 (1957).
[6] J. A. Wolf andA. Gray, Homogenous spaces defined by Lie group automorphisms. Journal of Differential Geometry2 (1968) 77–159. · Zbl 0182.24702
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.