×

On infinite-dimensional convex programs. (English) Zbl 0239.90040


MSC:

90C25 Convex programming
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Courant, R., Bull. am. math. soc., 49, 1-23, (1943)
[2] Fiacco, A.V.; McCormick, G.P., SIAM j., 15, 505-515, (1967)
[3] {\scE.J. Beltrami}. A new iterative method for non-linear programs (to be published). · JFM 01.0275.02
[4] Halkin, H.; Neustadt, L.W., Proc. natl. acad. sci. U.S., 56, 1066-1071, (1966)
[5] Yosida, K., ()
[6] Butler, T.; Martin, A.V., J. math. phys. (Cambridge), 41, 291-299, (1962)
[7] Courant, R., ()
[8] Dieudonne, J., ()
[9] Kuhn, H.W.; Tucker, A.W., Nonlinear programming, (), 481-492 · Zbl 0044.05903
[10] Ritz, W., Uber eine eue methode zur losung gewisser variations problem der mathematischen physik, J. reine angew. math., 135, (1908) · JFM 39.0449.01
[11] Fletcher, R.; Powell, M.J.D., Computer. J., 6, 163-168, (1963)
[12] Davidon, W.C., Variable metric method for minimization, Argonne natl. labs report ANL-5990 rev., (November, 1959)
[13] McGill, R., SIAM J. control., 3, 291-298, (1965)
[14] Beltrami, E.J.; McGill, R., Operations res., 14, 267-278, (1966)
[15] Gildstein, A.A., ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.