×

Generalized Robin problem in potential theory. (English) Zbl 0241.31008


MSC:

31B20 Boundary value and inverse problems for harmonic functions in higher dimensions

References:

[1] Ju. D. Biirago, V. G. Mazja: Some questions in potential theory and function theory for regions with irregular boundaries. (Russian), Zapiski nauc. sem. Leningrad, otd. MIAN 3 (1967).
[2] Ju. D. Burago V. G. Mazja, V. D. Sapoznikova: On the theory of potentials of a double and a simple layer for regions with irregular boundaries. (Russian), Problems Math. Anal. Boundary Value Problems Integr. Equations (Russian), 3-34. Izdat. Leningrad. Univ., Leningrad, 1966.
[3] C. Constantinescu, A. Cornea: Ideale Ränder Riemannscher Flächen. Springer Verlag, Berlin, 1963. · Zbl 0112.30801
[4] N. Dunford, J. T. Schwartz: Linear operators. Part I. Interscience Publishers, New York, 1958. · Zbl 0084.10402
[5] E. De Giorgi: Nuovi teoremi relativi alle misure (r - l)-dimensionali in uno spazio ad r dimensioni. Ricerche di Matematica 4 (1955), 95-113. · Zbl 0066.29903
[6] J. L. Doob: Boundary properties of functions with finite Dirichlet integrals. Ann. Inst. Fourier 12 (1966), 573-621. · Zbl 0121.08604
[7] G. F. D. Duff: Partial differential equations. Oxford University Press, 1956. · Zbl 0071.30903
[8] H. Federer: The Gauss-Green theorem. Trans. Amer. Math. Soc. 58 (1945), 44-76. · Zbl 0060.14102 · doi:10.2307/1990234
[9] H. Federer: A note on the Gauss-Green theorem. Proc. Amer. Math. Soc. 9 (1958), 447-451. · Zbl 0087.27302 · doi:10.2307/2033002
[10] N. M. Günther: Die Potentialtheorie und ihre Anwendung auf Grundaufgaben der mathematischen Physik. Leipzig, 1957. · Zbl 0077.09702
[11] O. D. Kellogg: Foundations of potential theory. Springer Verlag, Berlin, 1929. · Zbl 0053.07301
[12] J. Král: The Fredholm method in potential theory. Trans. Amer. Math. Soc. 125 (1966), 511-547. · Zbl 0149.07906 · doi:10.2307/1994580
[13] J. Král: Flows of heat and the Fourier problem. Czechoslovak Math. J. 20 (95) (1970), 556-598. · Zbl 0213.38203
[14] F. Y. Maeda: Normal derivatives on an ideal boundary. J. Sci. Hiroshima Univ. Ser. A-1 28 (1964), 113-131. · Zbl 0192.20402
[15] I. Netuka: Smooth surfaces with infinite cyclic variation (Czech). Časopis pro pěstování matematiky 96 (1971), 86-101. · Zbl 0204.08002
[16] I. Netuka: The Robin problem in potential theory. Comment. Math. Univ. Carolinae 12 (1971), 205-211. · Zbl 0215.42602
[17] I. Netuka: An operator connected with the third boundary value problem in potential theory. Czechoslovak Math. J. 22 (97), (1972) · Zbl 0241.31009
[18] I. Netuka: The third boundary value problem in potential theory. Czechoslovak Math. J. 22 (97), (1972) · Zbl 0242.31007
[19] J. Plemelj: Potentialtheoretische Untersuchungen. Leipzig, 1911. · JFM 42.0828.10
[20] J. Radon: Über die Randwertaufgaben beim logarithmischen Potential. Sitzungsber. Akad. Wiss. Wien (2a) 128 (1919), 1123-1167. · JFM 47.0457.01
[21] V. D. Sapoznikova: Solution of the third boundary value problem by the method of potential theory for regions with irregular boundaries (Russian). Problems Math. Anal. Boundary Value Problems Integr. Equations (Russian), 35 - 44, Izdat. Leningrad. Univ., Leningrad, 1966.
[22] L. C Young: A theory of boundary values. Proc. London Math. Soc. (3) 14A (1965), 300-314. · Zbl 0147.07802 · doi:10.1112/plms/s3-14A.1.300
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.