×

zbMATH — the first resource for mathematics

An operator connected with the third boundary value problem in potential theory. (English) Zbl 0241.31009

MSC:
31B20 Boundary value and inverse problems for harmonic functions in higher dimensions
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] M. G. Arsove: Continuous potentials and linear mass distributions. SIAM Review 2 (1960), 177-184. · Zbl 0094.08005
[2] E. De Giorgi: Nuovi teoremi relativi alle misure (r - l)-dimensionali in uno spazio ad r dimensioni. Ricerche di Matematica 4 (1955), 95-113. · Zbl 0066.29903
[3] N. Dunford, J. T. Schwartz: Linear operators. Part I, Interscience Publishers, New York, 1958. · Zbl 0084.10402
[4] H. Federer: The Gauss-Green theorem. Trans. Amer. Math. Soc. 58 (1945), 44 - 76. · Zbl 0060.14102
[5] H. Federer: The (Ф, k) rectifiable subset of n space. Trans. Amer. Math. Soc. 62 (1947), 114-192. · Zbl 0032.14902
[6] H. Féderer: A note on the Gauss-Green theorem. Proc. Amer. Math. Soc. 9 (1958), 447-451. · Zbl 0087.27302
[7] H. Federer: Curvature measures. Trans. Amer. Math. Soc. 93 (1959), 418-491. · Zbl 0089.38402
[8] W. H. Fleming: Functions of several variables. Addison-Wesley Publishing Comp., INC., 1965. · Zbl 0136.34301
[9] J. Král: The Fredholm method in potential theory. Trans. Amer. Math. Soc. 125 (1966), 511-547. · Zbl 0149.07906
[10] J. Král: Flows of heat and the Fourier problem. Czechoslovak Math. J. 20 (1970), 556-598. · Zbl 0213.38203
[11] K. Kuratowski: Topology. vol. I, Academic Press, 1966. · Zbl 0163.17002
[12] N. S. Landkof: Fundamentals of modern potential theory. (Russian), Izdat. Nauka, Moscow, 1966.
[13] J. W. Milnor: Topology from the differentiable viewpoint. The University Press of Virginia, 1965. · Zbl 0136.20402
[14] M. Miranda: Distribuzioni aventi derivate misure, Insiemi di perimetro localmente finito. Ann. Scuola Norm. Sup. Pisa 18 (1964), 27-56. · Zbl 0131.11802
[15] I. Netuka: The Robin problem in potential theory. Comment. Math. Univ. Carolinae 12 (1971), 205-211. · Zbl 0215.42602
[16] I. Netuka: Generalized Robin problem in potential theory. Czechoslovak Math. J. 22 (1972), 312-324. · Zbl 0241.31008
[17] I. Netuka: The third boundary value problem in potential theory. Czechoslovak Math. J. 22 (1972) · Zbl 0242.31007
[18] V. D. Sapoznikova: Solution of the third boundary value problem by the method of potential theory for regions with irregular boundaries. (Russian), Problems Mat. Anal. Boundary Value Problems Integr. Equations (Russian), 35-44, Izdat. Leningrad. Univ., Leningrad,
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.