×

zbMATH — the first resource for mathematics

On the H. Lewy extension phenomenon. (English) Zbl 0241.32006

MSC:
32E99 Holomorphic convexity
35N15 \(\overline\partial\)-Neumann problems and formal complexes in context of PDEs
32F99 Geometric convexity in several complex variables
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aldo Andreotti and Hans Grauert, Théorème de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193 – 259 (French). · Zbl 0106.05501
[2] Aldo Andreotti and Edoardo Vesentini, Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 81 – 130. · Zbl 0138.06604
[3] Errett Bishop, Differentiable manifolds in complex Euclidean space, Duke Math. J. 32 (1965), 1 – 21. · Zbl 0154.08501
[4] S. J. Greenfield, Cauchy-Riemann equations in several variables, Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), 275 – 314. · Zbl 0159.37502
[5] Stephen J. Greenfield, Upper bounds on the dimension of extendibility of submanifolds in \?\(^{n}\), Proc. Amer. Math. Soc. 23 (1969), 185 – 189. · Zbl 0188.39104
[6] Lars Hörmander, \?² estimates and existence theorems for the \partial operator, Acta Math. 113 (1965), 89 – 152. · Zbl 0158.11002
[7] Lars Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. · Zbl 0271.32001
[8] J. J. Kohn and Hugo Rossi, On the extension of holomorphic functions from the boundary of a complex manifold, Ann. of Math. (2) 81 (1965), 451 – 472. · Zbl 0166.33802
[9] Hans Lewy, On the local character of the solutions of an atypical linear differential equation in three variables and a related theorem for regular functions of two complex variables, Ann. of Math. (2) 64 (1956), 514 – 522. · Zbl 0074.06204
[10] Hans Lewy, On hulls of holomorphy, Comm. Pure Appl. Math. 13 (1960), 587 – 591. · Zbl 0113.06102
[11] B. Malgrange, Ideals of differentiable functions, Tata Institute of Fundamental Research Studies in Mathematics, No. 3, Tata Institute of Fundamental Research, Bombay; Oxford University Press, London, 1967. · Zbl 0177.17902
[12] Ricardo Nirenberg, Function algebras on a class of pseudoconvex submanifolds of \?\(^{n}\), Boll. Un. Mat. Ital. (4) 3 (1970), 628 – 636 (English, with Italian summary). · Zbl 0202.36701
[13] Ricardo Nirenberg and R. O. Wells Jr., Approximation theorems on differentiable submanifolds of a complex manifold, Trans. Amer. Math. Soc. 142 (1969), 15 – 35. · Zbl 0188.39103
[14] Hugo Rossi, Holomorphically convex sets in several complex variables, Ann. of Math. (2) 74 (1961), 470 – 493. · Zbl 0107.28601
[15] Труды международного конгресса математиков (Москва, 1966), Едитед бы И. Г. Петровский, Издат. ”Мир”, Мосцощ, 1968 (Руссиан).
[16] Giuseppe Tomassini, Tracce delle funzioni olomorfe sulle sottovarietà analitiche reali d’una varietà complessa, Ann. Scuola Norm. Sup. Pisa (3) 20 (1966), 31 – 43 (Italian). · Zbl 0154.33501
[17] B. Weinstock, On holomorphic extension from real submanifolds of complex Euclidean space, Thesis, Massachusetts Institute of Technology, Cambridge, Mass., 1966.
[18] R. O. Wells Jr., On the local holomorphic hull of a real submanifold in several complex variables, Comm. Pure Appl. Math. 19 (1966), 145 – 165. · Zbl 0142.33901
[19] R. O. Wells Jr., Holomorphic hulls and holomorphic convexity, Rice Univ. Studies 54 (1968), no. 4, 75 – 84. · Zbl 0177.11402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.