×

zbMATH — the first resource for mathematics

Interpolationsfunktoren, Folgenideale und Operatorenideale. (German) Zbl 0241.46063

MSC:
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
47L30 Abstract operator algebras on Hilbert spaces
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] P. L. Butzer, H. Berens: Semi-Groups of Operators and Approximation. Berlin-Heidelberg- New York 1967. · Zbl 0164.43702
[2] A. Calderon: Intermediate spaces and interpolation, the complex method. Studia Math. 24 (1964) 113-190. · Zbl 0204.13703
[3] N. Deutsch: Interpolation dans les espaces vectoriels topologiques localement convexes. Bull. Soc. Math. France Mémoire 13 (1968). · Zbl 0172.39501
[4] D. J. H. Garling: On Ideals of operators in Hilbert space. Proc. London Math. Soc. (3) 17 (1967) 115-138. · Zbl 0149.34202
[5] I. Z. Gochberg, M. G. Krein: Einführung in die Theorie der linearen nichtselbstadjungierten Operatoren. Moskau 1965
[6] J. Lions, J. Peetre: Sur une classe d’espaces d’interpolation. Inst. Hautes Études Sci. Publ. Math. 19 (1964) 5-68. · Zbl 0148.11403
[7] B. S. Mitiagin: Interpolationstheorie für Modular-Räume. Mat. Sborník 66 (1965) 473 - 482
[8] A. Pietsch: Ideale von \(S_p\)-Operatoren in Banachräumen. Studia Math. 38 (1970), 59-69. · Zbl 0213.14505
[9] A. Pietsch, H. Triebel: Interpolationstheorie für Banachideale von beschränkten linearen Operatoren. Studia Math. 31 (1968) 95-109. · Zbl 0182.17002
[10] H. Triebel: Über die Verteilung der Approximationszahlen kompakter Operatoren in Sobolev-Besov-Räumen. Invest. math. 4 (1967) 275-293. · Zbl 0165.14501
[11] H. Triebel: Zur Interpolation von Normidealen in Hilberträumen. Wiss. Zeitschrift FSU Jena, Math.-Nat. Reihe, 18 (1969) 263-267. · Zbl 0211.14903
[12] R. Schatten: Norm ideals of completely continuous operators. Berlin-Göttingen-Heidelberg 1960. · Zbl 0090.09402
[13] G. I. Russu: Symmetrische Funktionenräume ohne Majoranteneingenschaft. Mat. Issled (Kishinev) 4 (1969), 82-93
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.