Uhlenbeck, K. Morse theory on Banach manifolds. (English) Zbl 0241.58002 J. Funct. Anal. 10, 430-445 (1972). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 33 Documents MSC: 58B05 Homotopy and topological questions for infinite-dimensional manifolds 58C25 Differentiable maps on manifolds 58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces 57R65 Surgery and handlebodies × Cite Format Result Cite Review PDF Full Text: DOI Euclid References: [1] Hartman, P., On homotopic harmonic maps, Can. J. Math., 19, 673-687 (1967) · Zbl 0148.42404 [2] Palais, R. S., Luisternik-Schmirelman theory on Banach manifolds, Topology, 5, 115-132 (1966) · Zbl 0143.35203 [3] Palais, R. S., Morse theory on Hilbert manifolds, Topology, 2, 299-340 (1963) · Zbl 0122.10702 [4] Palais, R. S., Foundations of Global Non-Linear Analysis, (Mathematics Lecture Notes Series (1968), Benjamin: Benjamin New York) · Zbl 0164.11102 [5] Smale, S., Morse theory and a non-linear generalization of the Dirichlet problem, Ann. of Math., 80, 382-396 (1964) · Zbl 0131.32305 [6] S. Smale; S. Smale · Zbl 0166.36102 [7] A. Tromba; A. Tromba · Zbl 0256.58004 [8] Uhlenbeck, K., Integrals with Non-Degenerate Critical Points, Bull. Amer. Math. Soc., 76, 125-128 (1970) · Zbl 0198.43403 [9] K. Uhlenbeck; K. Uhlenbeck This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.