×

Nonmetric multidimensional scaling: A Monte Carlo study of the basic parameters. (English) Zbl 0241.92025


MSC:

92-00 General reference works (handbooks, dictionaries, bibliographies, etc.) pertaining to biology
91E99 Mathematical psychology

Software:

TORSCA
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Armstrong, J. S. Derivation of theory by means of factor analysis or Tom Swift and his electric factor analysis machine.The American Statistician, 1967,21 (12), 17–21.
[2] Arnold, J. B. A multidimensional scaling of semantic distance. Unpublished manuscript, Saint Mary’s College, 1970.
[3] Attneave, F. Dimensions of similarity.American Journal of Psychology, 1950,63, 516–556.
[4] Attneave, F. Perception and related areas. In S. Koch (Ed.),Psychology: a study of a science Vol. 4. New York: McGraw-Hill, 1962. Pp. 619–659.
[5] Cross, D. V. Metric properties of multidimensional stimulus generalization. In D. I. Mostofsky (Ed.),Stimulus generalization. Stanford, 1965. Pp. 72–93.
[6] Fillenbaum, S. F., & Rapoport, A. Paper presented at the Advanced Research Seminar on Scaling and Measurement, Newport Beach, Calif., June, 1969.
[7] Householder, A. S. & Landahl, H. D.Mathematical biophysics of the central nervous system. Bloomington, Ind.: Principia Press, 1945. · Zbl 0063.02079
[8] Hyman, R. & Well, A. Judgments of similarity and spatial models.Perception and Psychophysics, 1967,2, 233–248.
[9] Hyman, R. & Well, A. Perceptual separability and spatial models.Perception and Psychophysics, 1968,3, 161–166.
[10] Klahr, D. A Monte Carlo investigation of the statistical significance of Kruskal’s nonmetric scaling procedure.Psychometrika, 1969,3, 319–330.
[11] Kruskal, J. B. Multidimensional scaling by optimizing goodness-of-fit to a nonmetric hypothesis.Psychometrika, 1964,29, 1–28. (a) · Zbl 0123.36803
[12] Kruskal, J. B. Nonmetric multidimensional scaling: a numerical method.Psychometrika, 1964,29, 115–130. (b) · Zbl 0123.36804
[13] Richardson, M. W. Multi-dimensional psychophysics.Psychological Bulletin, 1938,35, 659. (Abstract)
[14] Shepard, R. N. The analysis of proximities: multidimensional scaling with an unknown distance function: I.Psychometrika, 1962,27, 125–140. (a) · Zbl 0129.12103
[15] Shepard, R. N. The analysis of proximities: multidimensional scaling with an unknown distance function: II.Psychometrika, 1962,27, 219–246. (b) · Zbl 0129.12103
[16] Shepard, R. N. Attention and the metric structure of the stimulus space.Journal of Mathematical Psychology, 1964,1, 54–87.
[17] Shepard, R. N. Some principles and prospects for the spatial representation of behavioral science data. Paper presented at the Advanced Research Seminar on Scaling and Measurement, Newport Beach, Calif., June, 1969.
[18] Shepard, R. N. & Carroll, J. D. Parametric representation of nonlinear data structures. In P. R. Krishnaian (Ed.),Multivariate analysis. New York: Academic Press, 1966. Pp. 561–592. · Zbl 0236.62046
[19] Sherman, C. R. & Young, F. W. Nonmetric multidimensional scaling: A Monte Carlo study.Proceedings of the 76th Annual Convention of the American Psychological Association, 1968,3, 207–208.
[20] Spence, I. Multidimensional scaling: An empirical and theoretical investigation. Unpublished doctoral dissertation, University of Toronto, September, 1970.
[21] Stenson, H. H. & Knoll, R. L. Goodness of fit for random rankings in Kruskal’s nonmetric scaling procedure.Psychological Bulletin, 1969,71 (2) 122–126.
[22] Torgerson, W. S.Theory and methods of scaling. New York: Wiley, 1958.
[23] Young, F. W. TORSCA-9, A FORTRAN IV program for nonmetric multidimensional scaling.Behavioral Science, 1968,13, 343–344.
[24] Young, F. W. Polynomial conjoint analysis of similarities: a model for constructing polynomial conjoint measurement algorithms. Chapel Hill, N. C.:L. L. Thurstone Psychometric Laboratory Report No. 74, 1969. (a)
[25] Young, F. W. Polynomial conjoint analysis of similarities: definitions for a specific algorithm. Chapel Hill, N. C.:L. L. Thurstone Psychometric Laboratory Report No. 76, 1969. (b)
[26] Young, F. W. Polynomial conjoint analysis of similarities: operations of a specific algorithm. Chapel Hill, N. C.:L. L. Thurstone Psychometric Laboratory Report No. 77, 1969. (c)
[27] Young, F. W. Nonmetric multidimensional scaling: recovery of metric information.Psychometrika, 1970,35, 455–473.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.