×

zbMATH — the first resource for mathematics

The group of quadratic extensions. (English) Zbl 0242.13005

MSC:
13B05 Galois theory and commutative ring extensions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Auslander, M.; Buchsbaum, D., On ramification theory in Noetherian rings, Am. J. math., 81, 749-765, (1959) · Zbl 0093.04104
[2] Auslander, M.; Goldman, O., The Brauer group of a commutative ring, Trans. am. math. soc., 97, 367-409, (1960) · Zbl 0100.26304
[3] Bass, H., Algebraic K-theory, (1968), Benjamin New York · Zbl 0174.30302
[4] Bass, H., Topics in algebraic K-theory, Tata inst. notes, 41, (1967), Bombay · Zbl 0226.13006
[5] Bourbaki, N., Algèbre commutative, (1961-1965), Hermann Paris
[6] Cassels, J.A.W.; Fröhlich, A., Algebraic number theory, (), 233-234
[7] Chase, S.; Harrison, D.; Rosenberg, A., Galois theory and Galois cohomology of commutative rings, Am. math. soc. mem., 52, 15-33, (1965) · Zbl 0143.05902
[8] Dieudonné, J., Topics in local algebra, Notre dame math. lectures, 10, (1967)
[9] Harrison, D., Abelian extensions of commutative rings, Am. math. soc. mem., 52, 1-14, (1965) · Zbl 0143.06003
[10] Hasse, H., Zahlentheorie, (1949), Akademie Verlag Berlin
[11] Micali, A.; Villamayor, O., Sur LES algèbres de Clifford, Ann. sci. de l’E.N.S., 1, 271-304, (1968) · Zbl 0182.05304
[12] Scharlau, W., Quadratische formen and Galois-cohomologie, Invent. math., 4, 238-264, (1967) · Zbl 0165.35802
[13] Serre, J.-P., Corps locaux, (1962), Hermann Paris · Zbl 0137.02601
[14] Small, C., The Brauer-wall group of a commutative ring, Trans. am. math. soc., 156, 455-491, (1971) · Zbl 0216.32501
[15] Wall, C.T.C., Graded Brauer groups, Crelle’s J., 213, 187-199, (1964) · Zbl 0125.01904
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.