On the purity of the branch locus. (English) Zbl 0242.14001


14B10 Infinitesimal methods in algebraic geometry
Full Text: Numdam EuDML


[1] A. Altman And S. Kleiman [1] Introduction to Grothendieck duality theory , Lecture Notes in Math. Vol. 146, Springer-Verlag, Berlin-Heidelberg -New York (1970). · Zbl 0215.37201
[2] A. Grothendieck [2 ] Appendix to Crystals and the De Rham Coh. of Sch., in Dix exposés sur la cohomologie des schémas , North-Holland Publ. Co., Amsterdam (1968). · Zbl 0215.37102
[3] A. Grothendieck [3] ” Sem de Geom. Alg. 2 ”, North-Holland Publ. Co., Amsterdam (1968). Exposé X Theorem (3.4).
[4] N. Katz [4] Nilpotent connections and the Monodromy Theorem Applications of a Result of Turrittin ”, in Sem. on Degeneration of Alg. Var., Inst. for Adv. Study , Princeton, New Jersey (1970). Remark 8.9.16. · Zbl 0221.14007
[5] O. Zariski [5] ” On the purity of the branch locus of algebraic functions ,” Proc. Nat. Acad. Sci. U.S.A. 44 (1958), 791-796. · Zbl 0087.35703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.