×

zbMATH — the first resource for mathematics

Algebraic equivalence modulo rational equivalence on a cubic threefold. (English) Zbl 0242.14002

MSC:
14C15 (Equivariant) Chow groups and rings; motives
14J99 Surfaces and higher-dimensional varieties
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] E. Bombieri And H.P.F. Swinnerton-Dyer [1] On the local zeta function of a cubic threefold . Annali Scuola Norm. Sup. di Pisa 21 (1967), 1-29. · Zbl 0153.50501
[2] W.L. Chow [2] On equivalence classes of cycles in an algebraic variety . Annals of Math. 64 (1956), 450-479. · Zbl 0073.37304
[3] C.H. Clemens And P.A. Griffiths [3] The intermediate Jacobian of the cubic three fold . Annals of Math. 95 (1972), 281-356. · Zbl 0214.48302
[4] A. Grothendieck [4] Sur quelques propriétés fondamentales en théorie des intersections. Exposé 4; Séminaire C. Chevalley: Anneaux de Chow (1958), p. 4.01-4.36. |
[5] D. Mumford [5] Prym varieties . To be published. [6] The intermediate Jacobian of the cubic threefold . Private paper. · Zbl 0299.14018
[6] J.P. Murre [7] Intersection multiplicities of maximal connected bunches . Amer. J. of Math. 80 (1958), 311-330. · Zbl 0083.36801
[7] L. Roth AND J.G. Semple [8] Introduction to algebraic geometry . Oxford. Clarendon Press, 1949. · Zbl 0041.27903
[8] P. Samuel [9] Relations d’équivalence en géométrie algébrique . Proc. Internat. Congress Math. Edinburgh 1958, 470-487. · Zbl 0119.36901
[9] A. Weil [10] Foundations of Algebraic Geometry . Amer. Math. Soc. Coll. Publ. 29, 2nd Ed. 1962. · Zbl 0168.18701
[10] O. Zariski [11] Introduction to the problem of minimal models in the theory of algebraic surfaces . Publ. of the Math. Soc. Japan 4, 1958. · Zbl 0093.33904
[11] A.M. Šermenev [12] On the motif of a cubic hypersurface . Izvestija Akad. Nauk S.S.S.R. 34 (1970), 515-522 (Russian). Translation: Math. of U.S.S.R. 4 (1970), 520-526. · Zbl 0234.14013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.