×

Holomorphic vector fields on complex surfaces. (English) Zbl 0242.14008


MSC:

14J10 Families, moduli, classification: algebraic theory
32L10 Sheaves and cohomology of sections of holomorphic vector bundles, general results
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Atiyah, M. F., Bott, R.: A lefschetz fixed point formula for elliptic complexes I. Ann. of Math.86, 374-407 (1967). · Zbl 0161.43201
[2] Bott, R.: Vector fields and characteristic numbers. Mich. Math. J.14, 231-244 (1967). · Zbl 0145.43801
[3] Carrell, J.: Holomorphically injective complex toral actions. Proceedings of the second conference on compact transformation groups. Lecture notes in mathematics299, 205-231 (1972).
[4] Enriques, F.: Le superficie algebriche. N. Zanichelli Editore, Bologna 1949.
[5] Kodaira, K.: On compact analytic surfaces I, II, III. Ann. of Math.71, 111-144 (1960);77, 563-626 (1963);78, 1-40 (1963). · Zbl 0098.13004
[6] Kodaira, K.: On the structure of compact complex analytic surfaces I, II, III, IV. Amer. J. of Math.86, 751-798 (1964);88, 682-721 (1966);90, 55-83 (1968);90, 1048-1066 (1968). · Zbl 0137.17501
[7] Kosniowski, C.: Applications of the holomorphic Lefschetz formula, Ball. London: Math. Soc.2, 43-48 (1970). · Zbl 0193.23903
[8] Lichnerowicz, A.: Varieties Kahleriennes et premier classe de Chern. J. Differential Geom.1, 195-224 (1967). · Zbl 0167.20004
[9] Matsushima, Y.: Holomorphic vector fields on compact Kaehler manifolds. A.M.S. 1971. · Zbl 0218.53084
[10] Potters, J.: On almost homogeneous compact complex surfaces. Invent. math.8, 244-266 (1969). · Zbl 0205.25102
[11] Remmert, R., Van de Ven, A.: Zur Funktionentheorie homogener komplexer Mannigfaltigkeiten. Topology2, 137-157 (1963). · Zbl 0122.08602
[12] Safarevic, I. R.: Algebraic surfaces. Proceedings of the Steklov Institute of Math. No.75, (A.M.S. 1967) (1965).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.