Richardson, R. W. jun. Principal orbit types for algebraic transformation spaces in characteristic zero. (English) Zbl 0242.14010 Invent. Math. 16, 6-14 (1972). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 34 Documents MSC: 14L10 Group varieties 20G05 Representation theory for linear algebraic groups 57S15 Compact Lie groups of differentiable transformations PDF BibTeX XML Cite \textit{R. W. Richardson jun.}, Invent. Math. 16, 6--14 (1972; Zbl 0242.14010) Full Text: DOI EuDML OpenURL References: [1] Bialynicki-Birula, A.: On homogeneous affine spaces of linear algebraic groups. Amer. J. Math.85, 577-582 (1963). · Zbl 0116.38202 [2] Borel, A.: Linear algebraic groups. Notes by H. Bass. New York: Benjamin 1969. · Zbl 0186.33201 [3] Guillemin, V., Sternberg, S.: Remarks on a paper of Hermann. Trans. Amer. Math. Soc.130, 110-116 (1968). · Zbl 0155.05701 [4] Luna, D.: Slices étales. (To appear.) [5] Montgomery, D., Zippin, L.: Topological transformation groups. New York: Interscience 1955. · Zbl 0068.01904 [6] Mumford, D.: Geometric invariant theory. Berlin-Heidelberg-New York: Springer 1965. · Zbl 0147.39304 [7] Richardson, R.: Deformations of Lie subgroups and the variation of isotropy subgroups. (To appear.) · Zbl 0242.22020 [8] Rosenlicht, M.: Some basic theorems on algebraic groups. Amer. J. Math.78, 401-443 (1956). · Zbl 0073.37601 [9] Weil, A.: Remarks on the cohomology of groups. Ann. of Math. (2)80, 149-157 (1964). · Zbl 0192.12802 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.