×

zbMATH — the first resource for mathematics

Principal orbit types for algebraic transformation spaces in characteristic zero. (English) Zbl 0242.14010

MSC:
14L10 Group varieties
20G05 Representation theory for linear algebraic groups
57S15 Compact Lie groups of differentiable transformations
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Bialynicki-Birula, A.: On homogeneous affine spaces of linear algebraic groups. Amer. J. Math.85, 577-582 (1963). · Zbl 0116.38202
[2] Borel, A.: Linear algebraic groups. Notes by H. Bass. New York: Benjamin 1969. · Zbl 0186.33201
[3] Guillemin, V., Sternberg, S.: Remarks on a paper of Hermann. Trans. Amer. Math. Soc.130, 110-116 (1968). · Zbl 0155.05701
[4] Luna, D.: Slices étales. (To appear.)
[5] Montgomery, D., Zippin, L.: Topological transformation groups. New York: Interscience 1955. · Zbl 0068.01904
[6] Mumford, D.: Geometric invariant theory. Berlin-Heidelberg-New York: Springer 1965. · Zbl 0147.39304
[7] Richardson, R.: Deformations of Lie subgroups and the variation of isotropy subgroups. (To appear.) · Zbl 0242.22020
[8] Rosenlicht, M.: Some basic theorems on algebraic groups. Amer. J. Math.78, 401-443 (1956). · Zbl 0073.37601
[9] Weil, A.: Remarks on the cohomology of groups. Ann. of Math. (2)80, 149-157 (1964). · Zbl 0192.12802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.