Minkowskische Reduktionstheorie über Funktionenkörpern. (German) Zbl 0242.20046


20G30 Linear algebraic groups over global fields and their integers
Full Text: DOI EuDML


[1] Borel, A.: Reduction theory for arithmetic groups. Proc. Sympos. Pure Math., vol. 9, Amer. Math. Soc., Providence, R. I., S. 20-25, 1966. · Zbl 0213.47201
[2] ?, and Harish Chandra: Arithmetic subgroups of algebraic groups. Ann. of Math. (2),75, 485-535 (1962). · Zbl 0107.14804 · doi:10.2307/1970210
[3] ?, et J. Tits: Groupes réductifs. Publ. Math. I.H.E.S.27, 55-151 (1965).
[4] Demazure, M., et A. Grothendieck: Schémas en groupes Séminaire I.H.E.S., Buressur-Yvette, 1963/64.
[5] Godement, R.: Domaines fondamentaux des groupes arithmétiques. Séminaire Bourbaki, Exp. 257, Paris 1963.
[6] Harder, G.: Halbeinfache Gruppenschemata über Dedekindringen. Inventiones math.4, 165-191 (1967). · Zbl 0158.39502 · doi:10.1007/BF01425754
[7] ?: Halbeinfache Gruppenschemata über vollständigen Kurven. Inventiones math.6, 107-149 (1968). · Zbl 0186.25902 · doi:10.1007/BF01425451
[8] Helgason, S.: Differential geometry and symmetric spaces. New York and London: Academic Press 1962. · Zbl 0111.18101
[9] Kneser, M.: Schwache Approximation in algebraischen Gruppen. Colloque sur la théorie des groupes algébriques, CBRM, Bruxelles 1962.
[10] Weil, A.: Adeles and algebraic groups. Lecture notes. Princeton 1961.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.