×

zbMATH — the first resource for mathematics

The third boundary value problem in potential theory. (English) Zbl 0242.31007

MSC:
31B20 Boundary value and inverse problems for harmonic functions in higher dimensions
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] M. Brelot: Eléments de la théorie classique du potentiel. Les cours de Sorbonne, Paris, 1959. · Zbl 0084.30903
[2] Ju. D. Burago, V. G. Mazja: S: ome questions in potential theory and function theory for regions with irregular boundaries. (Russian), Zapiski nauč. sem. Leningrad, otd. MIAN 3 (1967).
[3] Ju. D. Burago V. G. Mazja, V. D. Sapoznikova: On the theory of potentials of a double and a simple layer for regions with irregular boundaries. (Russian), Problems Math. Anal. Boundary Value Problems Integr. Equations (Russian), 3 - 34, Izdat. Leningrad. Univ.,Leningrad, 1966.
[4] J. Král: The Fredholm method in potential theory. Trans. Amer. Math. Soc. 125 (1966), 511-547. · Zbl 0149.07906
[5] N. L. Landkof: Fundamentals of modern potential theory. (Russian), Izdat. Nauka, Moscow, 1966.
[6] I. Netuka: The Robin problem in potential theory. Comment. Math. Univ. Carolinae 12 (1971), 205-211. · Zbl 0215.42602
[7] I. Netuka: Generalized Robin problem in potential theory. Czechoslovak Math. J. 22 (97) (1972), 312-324. · Zbl 0241.31008
[8] I. Netuka: An operator connected with the third boundary value problem in potential theory. Czechoslovak Math. J. 22 (97) (1972), 462-489. · Zbl 0241.31009
[9] J. Plemelj: Potentialtheoretische Untersuchungen. Leipzig, 1911. · JFM 42.0828.10
[10] J. Radon: Über die Randwertaufgaben beim logaritmischen Potential. Sitzungsber. Akad. Wiss. Wien (2a) 128 (1919), 1123-1167.
[11] F. Riesz, B. Sz. Nagy: Leçons d’analyse fonctionelle. Budapest, 1952. · Zbl 0046.33103
[12] S. Saks: Theory of the integral. Hafner Publishing Comp., New York, 1937. · Zbl 0017.30004
[13] V. D. Sapoznikova: Solution of the third boundary value problem by the method of potential theory for regions with irregular boundaries (Russian). Problems Math. Anal. Boundary Value Problems Integr. Equations (Russian), 35-44, Izdat. Leningrad. Univ., Leningrad, 1966.
[14] L. Schwartz: Théorie des distributions. Hermann, Paris, 1950. · Zbl 0037.07301
[15] K. Yosida: Functional analysis. Springer Verlag, Berlin, 1965. · Zbl 0126.11504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.