On Carleman estimates for pseudo-differential operators. (English) Zbl 0242.35069


35D10 Regularity of generalized solutions of PDE (MSC2000)
35S05 Pseudodifferential operators as generalizations of partial differential operators
35B45 A priori estimates in context of PDEs
Full Text: DOI EuDML


[1] Duistermaat, J.J., Hörmander, L.: Fourier integral operators, II. Acta Mathematica128, 183-269 (1972). · Zbl 0232.47055
[2] Egorov, Yu.V.: Non-degenerate subelliptic pseudo-differential operators. Mat. Sbornik82 (124), 323-342 (1970).
[3] Hörmander, L.: Linear partial differential operators. Berlin-Göttingen-Heidelberg: Springer 1963. · Zbl 0108.09301
[4] Hörmander, L.: Pseudo-differential operators and non-elliptic boundary problems. Ann. of Math.83, 129-209 (1966). · Zbl 0132.07402
[5] Hörmander, L.: Fourier integral operators, I Acta Mathematica127, 79-183 (1971). · Zbl 0212.46601
[6] Hörmander L.: On the existence and regularity of solutions of linear pseudo-differential equations, l’Enseignement Mathématique. He Série17, 99-163 (1971).
[7] Melin, A.: Lower bounds for pseudo-differential operators. Arkiv för Matematik9, 117-140 (1971). · Zbl 0211.17102
[8] Nirenberg, L., Treves, F.: On local solvability of linear partial differential equations. Part II: Sufficient conditions. Communications on Pure and Applied Math.23, 459-510 (1970). · Zbl 0208.35902
[9] Treves, F.: A new method of proof of the subelliptic estimates. Communications on Pure and Applied Math.24, 71-115 (1971). · Zbl 0206.11401
[10] Unterberger, A.: Resolution d’équations aux dérivées partielles dans des espaces de distributions d’ordre de régularité variable. Annales de l’Institut Fourier21, 2, 85-128 (1971). · Zbl 0205.43104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.