Die Universalität des Raumes \(c_0\) für die Klasse der Schwartz-Räume. (German) Zbl 0242.46032


46A03 General theory of locally convex spaces
46F05 Topological linear spaces of test functions, distributions and ultradistributions
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
Full Text: DOI EuDML


[1] Berezanskň, I. A.: Inductively reflexive, locally convex spaces. Dokl. Akad. Nauk SSSR182, 20–22 (1968). Engl. Übersetzung in Soviet Math. Dokl.9. 1080–1082 (1968).
[2] Diestel, J., Morris, S. A., Saxon, S. A.: Varieties of linear topological spaces. Trans. Amer. Math. Soc.171, (1972). · Zbl 0252.46001
[3] Horváth, J.: Topological vector spaces and distributions I. Reading, Mass.: Addison-Wesley 1966.
[4] Jarchow, H.: Dualität und Marinescu-Räume. Math. Ann.182, 134–144 (1969). · Zbl 0175.41502
[5] Jarchow, H.: Duale Charakterisierungen und Schwartz-Räume. Math. Ann.196, 85–90 (1972). · Zbl 0225.46007
[6] Jarchow, H.: Barrelledness and Schwartz spaces. Math. Ann.200, 241–252 (1973). · Zbl 0234.46003
[7] Kōmura, T., Kōmura, Y.: Über die Einbettung der nuklearen Räume in (s) A . Math. Ann.162, 284–288 (1966). · Zbl 0156.13402
[8] Ra \[ \(\backslash\)overset\{\(\backslash\)lower0.5em\(\backslash\)hbox\{\(\smash{\scriptscriptstyle\smile}\)\}\}\{\(\backslash\)imath \} \] kov, D. A.: Einige Eigenschaften vollstetiger linearer Operatoren (russisch). Ucen. Zap. Moscov Gos. Ped. Inst. im. V. I. Lenina188, 171–191 (1962).
[9] Schaefer, H. H.: Topological vector spaces (3. ed.). Berlin-Heidelberg-New York: Springer 1971. · Zbl 0212.14001
[10] Terzio \[ \(\backslash\)overset\{\(\backslash\)lower0.5em\(\backslash\)hbox\{\(\smash{\scriptscriptstyle\smile}\)\}\}\{g\} \] lu, T.: On Schwartz spaces. Math. Ann.182, 236–242 (1969).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.