×

zbMATH — the first resource for mathematics

\(2^ \prime\) is homeomorphic to the Hilbert cube. (English) Zbl 0242.54006

MSC:
54B20 Hyperspaces in general topology
54F65 Topological characterizations of particular spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Morton Brown, Some applications of an approximation theorem for inverse limits, Proc. Amer. Math. Soc. 11 (1960), 478 – 483. · Zbl 0113.37705
[2] Ott-Heinrich Keller, Die Homoiomorphie der kompakten konvexen Mengen im Hilbertschen Raum, Math. Ann. 105 (1931), no. 1, 748 – 758 (German). · Zbl 0003.22401
[3] R. M. Schori, Hyperspaces and symmetric products of topological spaces, Fund. Math. 63 (1968), 77 – 88. · Zbl 0172.48003
[4] James E. West, Infinite products which are Hilbert cubes, Trans. Amer. Math. Soc. 150 (1970), 1 – 25. · Zbl 0198.56001
[5] James E. West, Mapping cylinders of Hilbert cube factors, General Topology and Appl. 1 (1971), no. 2, 111 – 125. · Zbl 0224.57004
[6] James E. West, The subcontinua of a dendron form a Hilbert cube factor, Proc. Amer. Math. Soc. 36 (1972), 603 – 608. · Zbl 0279.54018
[7] M. Wojdyslawski, Sur la contractilit√© des hyperspaces de continus localement connexes, Fund. Math. 30 (1938), 247-252. · Zbl 0018.42701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.