×

zbMATH — the first resource for mathematics

Linear programming with multiple objective functions: step method (stem). (English) Zbl 0242.90026

MSC:
90C05 Linear programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. Benayoun and J. Tergny, ”Mathematical Programming with multi-objective functions: a solution by P.O.P. (Progressive Orientation Procedure),”Revue METRA, Vol. 9, no. 2 (1970) 279–299.
[2] R. Benayoun, J.C. Holl and P. Leyrat, ”Gestion prévisionnelle des cadres d’entreprises,” Communication au Symposium on Mathematical Models and Manpower Systems, Porto – (Sept. 1969).
[3] P. Bod, ”Programmation linéaire dans le cas de plusieurs fonctions objectif données simultanément,”Publ. Math. Inst. Hungar. Acad. Sc. (séries B) no. 8 (1963) 541–554.
[4] G. Boldur and I.M. Stancu-Minasian, ”La résolution de certains problèmes de programmation linéaire multidimensionnelle,” Session Scientifique du Centre de Calcul Economique et Cybernétique Economique Bucarest (1969). · Zbl 0217.27103
[5] S.K. Gupta, C. Maier-Rothe and M.F. Stankard, ”Choosing between multiple objective alternatives: a linear programming approach,” Management Science Center, University of Pennsylvanie (Dec. 1968).
[6] J. Saska, ”Linear Multi-Programming, Economicko-Mathematicky,” Obzor 3 Geskolovenska Academie (Ved. 1968).
[7] I.M. Stancu-Minasian, ”The solution of transportation network in the case of multiple criteria,” The Center of Economic Computation and Economic Cybernetics, Bucarest (in preparation). · Zbl 0391.90060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.