×

zbMATH — the first resource for mathematics

Some relations between higher K-functors. (English) Zbl 0243.18020

MSC:
18F25 Algebraic \(K\)-theory and \(L\)-theory (category-theoretic aspects)
16E20 Grothendieck groups, \(K\)-theory, etc.
13D15 Grothendieck groups, \(K\)-theory and commutative rings
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Barr, M; Beck, J, Homology and standard constructions, (), 245-335
[2] Bass, H, Algebraic K-theory, (1968), Benjamin New York · Zbl 0174.30302
[3] Eilenberg, S; Moore, J.C, Adjoint functors and triples, Ill. J. math., 9, 381-398, (1965) · Zbl 0135.02103
[4] Gersten, S.M, Whitehead groups of free associative algebras, Bull. amer. math. soc., 71, 157-159, (1965) · Zbl 0234.16019
[5] Gersten, S.M, On the functor K2, I, J. of alg., 17, 212-237, (1971) · Zbl 0215.09704
[6] Gersten, S.M, On Mayer-Vietoris functors and algebraic K-theory, J. of alg., 18, 51-88, (1971) · Zbl 0215.09801
[7] \scS. M. Gersten, Homotopy theory of rings, to appear. · Zbl 0264.18009
[8] Karoubi, M; Villamayor, O, Foncteurs Kn en algèbre et en topologie, C.R. acad. sci. Paris, 269, 416-419, (1969) · Zbl 0182.57001
[9] May, J.P, Simplicial objects in algebraic topology, (1967), Van Nostrand Princeton, N. J · Zbl 0165.26004
[10] Milnor, J, Notes on algebraic K-theory, () · Zbl 0594.22009
[11] Quillen, D, Spectral sequences of a double semisimplicial group, Topology, 5, 155-157, (1966) · Zbl 0148.43105
[12] \scD. Quillen, The K-theory associated to a finite field, to appear. · Zbl 0249.18022
[13] \scJ. R. Silvester, On K2(k[X]), to appear.
[14] \scM. R. Stein, Relativizing functors on rings and algebraic K-theory, to appear. · Zbl 0219.18007
[15] Swan, R.G, Algebraic K-theory, (), 76 · Zbl 0193.34601
[16] Swan, R.G, Non-abelian homological algebra and K-theory, (), 88-123
[17] Swan, R.G, Excision in algebraic K-theory, J. pure app. alg., 1, 221-252, (1971) · Zbl 0262.16025
[18] Ulmer, F, On cotriple and André (co) homology, their relationship with classical homological algebra, Lect. notes math., 80, 376-398, (1969) · Zbl 0172.02301
[19] Ulmer, F, Kan extensions, cotriples and André (co) homology, (), 278-308 · Zbl 0201.02401
[20] \scK. Dennis, Universal GEn rings and the functor K2, to appear.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.