×

Coherent states for arbitrary Lie group. (English) Zbl 0243.22016


MSC:

22E70 Applications of Lie groups to the sciences; explicit representations
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Glauber, R. J.: Phys. Rev.130, 2529 (1963);131, 2766 (1963).
[2] Klauder, J. R., Sudarshan, E. C. G.: Fundamentals of quantum optics. New York: Benjamin 1968.
[3] Zeldovich, B. Ya., Perelomov, A. M., Popov, V. S.: JETP55, 589 (1968);57, 196 (1969); Preprints ITEP No.612, 618 (1968).
[4] Weyl, H.: Gruppentheorie und Quantenmechanik. Leipzig: S. Hirzel 1928.
[5] Barut, A. O., Girardello, L.: Commun. math. Phys.21, 41 (1971). · Zbl 0214.38203
[6] Mackey, G. W.: Bull. Am. Math. Soc.69, 628 (1963). · Zbl 0136.11502
[7] Perelomov, A. M.: Theoret. Math. Phys.6, 213 (1971).
[8] Cartier, P.: Symp. Pure Math., v. 9, Algebraic groups and discontinuous subgroups, p. 361. Providence, R.I.: Amer. Math. Soc. 1966.
[9] Gelfand, I. M., Minlos, R. A., Shapiro, Z. Ya.: Representations of the rotation group and the Lorentz group. Oxford: Pergamon Press 1963.
[10] Vilenkin, N. Ya.: Special functions and the theory of group representations. Providence, R.I.: Amer. Math. Soc. 1968. · Zbl 0172.18404
[11] Bargmann, V.: Ann. Math.48, 568 (1947). · Zbl 0045.38801
[12] —- Comm. Pure Appl. Math.14, 187 (1961). · Zbl 0107.09102
[13] Perelomov, A. M.: Theoret. Math. Phys.6, 368 (1971).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.