×

zbMATH — the first resource for mathematics

On multivalued evolution equations in Hilbert spaces. (English) Zbl 0243.35080

MSC:
35R20 Operator partial differential equations (= PDEs on finite-dimensional spaces for abstract space valued functions)
47F05 General theory of partial differential operators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] P. Benilan andH. Brezis,Solutions faibles d’équations d’evolutions dans les espaces de 2 Hilbert, à paraître aux Ann. Inst. Fourier.
[2] C. Berge,Espaces Topologiques, Fonctions Multivoques, Dunod, Paris, 2ème édition, 1959. · Zbl 0088.14703
[3] H. Brezis,Problèmes unilateraux, J. Math. Pures Appl. (1972). · Zbl 0237.35001
[4] H. Brezis Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, Contributions to Nonlinear Functional Analysis, ed., Zarantanello, Academic Press, 1971.
[5] H. Brezis,Opérateurs maximaux monotones et semi-groupes non linéaires. Cours de 3ème cycle rédigé par P. Benilan, Paris, 1971.
[6] H. Brezis, Propriétés régularisantes de certains semi-groupes non linéaires, Israel J. Math.9 (1971), 513–534. · Zbl 0213.14903
[7] H. Brezis,Semi-groupes non linéaires et applications Symposium sur les problèmes d’évolution. Symposia Mathematics VII, Academic Press, 1971.
[8] H. Brezis andA. Pazy,Semi-groups of nonlinear contractions on convex sets, J. Functional Analysis6 (1970), 237–281. · Zbl 0209.45503
[9] F. Browder,The fixed point theory of multivalued mappings in topological vector spaces, Math. Ann.177 (1963), 283–301. · Zbl 0176.45204
[10] C. Castaing,Sur les multi-applications mesurables, R.I.R.O.1 (1967), 91–126. · Zbl 0153.08501
[11] C. Castaing andM. Valadier,Equations différentielles multivoques dans les espaces vectoriels localement convexes, C. R. Acad. Sci.266 (1968), 985–987. · Zbl 0169.47402
[12] N. Dunford andJ. Schwartz.Linear Operators Interscience. · Zbl 0128.34803
[13] C. Henry,An existence theorem for a class of differential equations with multivalued right-hand side, to appear in J. Math. Anal. and Appl. · Zbl 0262.49019
[14] C. Henry,Differential equations with discontinuous right-hand side for planning procedures, to appear in J. Economic Theory4 (1972).
[15] T. Kato,Nonlinear semi-groups and evolution equations, J. Math. Soc. Japan19, (1967), 508–520. · Zbl 0163.38303
[16] T. Kato,Accretive operators and non linear evolution equations in Banach spaces; Nonlinear functional analysis, Proc. Symp. Pure Math., Amer. Math. Soc.,18 (1970), 138–161.
[17] A. Lasota,Une généralisation du premier théorème de Fredholm et ses applications à la théorie des équations différentielles ordinaires, Ann. Polon. Math.18 (1966), 65–77. · Zbl 0139.09201
[18] A. Lasota andOpial,An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci.13 (1965), 781–786. · Zbl 0151.10703
[19] J. L. Lions,Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, 1969.
[20] R. T. Rockafellar,On the maximality of the sums of nonlinear monotone operators, Trans. Amer. Math. Soc.,149 (1970), 75–88. · Zbl 0222.47017
[21] Seminaire, Semi-groupes et opérateurs non linéaires, Publications mathématiques d’Orsay, 1970–1971.
[22] M. Valadier,Sur l’intégration d’ensembles convexes compacts en dimension infinie, C. R. Acad. Sci.266 (1968) 14–16. · Zbl 0153.44804
[23] M. Valadier,Existence globale pour les équations différentielles multivoques, C. R. Acad. Sci.272 (1971), 474–477. · Zbl 0205.43103
[24] K. Yosida,Functional Analysis, Springer Verlag, 3rd ed. · Zbl 0126.11504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.