zbMATH — the first resource for mathematics

The Hamilton-Cartan formalism in the calculus of variations. (English) Zbl 0243.49011
Summary: We give an exposition of the calculus of variations in several variables. The introduction of a linear differential form studied by Cartan makes possible an invariant treatment of the Hamiltonian formalism. Noether’s theorem, the Hamilton-Jacobi equation and the second variation are discussed and a Poisson bracket is defined.

49L99 Hamilton-Jacobi theories
Full Text: DOI Numdam EuDML
[1] C. CARATHEODORY, Variationsrechnung und partielle differential-gleichungen erster ordnung, Teubner, Leipzig, 1935. · JFM 61.0547.01
[2] E. CARTAN, Leçons sur LES invariants intégraux, Hermann, Paris, 1922.
[3] Th. De DONDER, Théorie invariantive du calcul des variations, Hayez, Brussels, 1935. · Zbl 0013.16901
[4] H. GOLDSCHMIDT, Integrability criteria for systems of non-linear partial differential equations, J. Differential Geometry, 1 (1967), 269-307. · Zbl 0159.14101
[5] R. HERMANN, Differential geometry and the calculus of variations, Academic Press, New York, London, 1968. · Zbl 0219.49023
[6] E.L. HILL, Hamilton’s principle and the conservation theorems of mathematical physics, Rev. Modern Phys., 23 (1951), 253-260. · Zbl 0044.38509
[7] Th. LEPAGE, Sur LES champs géodésiques du calcul des variations, Acad. Roy. Belg. Bull. Cl. Sci., (5) 22 (1936), 716-729, 1036-1046 ; Sur le champ géodésique des intégrales multiples, Acad. Roy. Belg. Bull. Cl. Sci., (5) 27 (1941), 27-46 ; Champs stationnaires, champs géodésiques et formes intégrables, Acad. Roy. Belg. Bull. Cl. Sci., (5) 28 (1942), 73-92, 247-265. · JFM 62.1329.01
[8] J. MILNOR, Morse theory, Annals of Mathematics Studies, n° 51, Princeton University Press. Princeton, N. J., 1963. · Zbl 0108.10401
[9] C.B. MORREY, Jr., Multiple integrals in the calculus of variations, Springer-Verlag, Berlin, Heidelberg, New York, 1966. · Zbl 0142.38701
[10] S. SMALE, On the Morse index theorem, J. Math. Mech., 14 (1965), 1049-1055. · Zbl 0166.36102
[11] S. STERNBERG, Lectures on differential geometry, Prentice Hall, Englewood Cliffs, N. J., 1964. · Zbl 0129.13102
[12] L. VAN HOVE, Sur la construction des champs de de Donder-Weyl par la méthode des caractéristiques, Acad. Roy. Belg. Bull. Cl. Sci., (5) 31 (1945), 278-285. · Zbl 0033.12202
[13] H. WEYL, Geodesic fields in the calculus of variations for multiple integrals, Ann. of Math., 36 (1935), 607-629. · JFM 61.0554.04
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.