×

Compact Abelian group extensions of dynamical systems. II. (English) Zbl 0243.54039


MSC:

54H15 Transformation groups and semigroups (topological aspects)
28D05 Measure-preserving transformations
54H20 Topological dynamics (MSC2010)
PDFBibTeX XMLCite
Full Text: Numdam EuDML

References:

[1] W. Parry [1] Compact abelian group extensions of discrete dynamical systems . Z. Wahr. Verw. Geb. 13 (1969) 95-113. · Zbl 0184.26901 · doi:10.1007/BF00537014
[2] W. Parry [2] Spectral analysis of G-extensions of dynamical systems . Topology 9 (1970) 217-224. · Zbl 0176.20502
[3] R. Ellis [3] The construction of minimal discrete flows . Amer. J. Math. 87 (1965) 564-574. · Zbl 0129.38704 · doi:10.2307/2373063
[4] H. Furstenberg [4] Strict ergodicity and transformations of the torus . Amer. J. Math. 83 (1961) 573-601. · Zbl 0178.38404 · doi:10.2307/2372899
[5] H. Helson [5] Compact groups with ordered duals . Proc. London Math. Soc. 3.14A. (1965) 144-156. · Zbl 0142.10401 · doi:10.1112/plms/s3-14A.1.144
[6] T.W. Gamelin [6] Uniform Algebras . Prentice-Hall, 1969. · Zbl 0213.40401
[7] W. Parry [7] Ergodic properties of affine transformations and flows on nilmanifolds . Amer. J. Math. 91 (1969) 757-771. · Zbl 0183.51503 · doi:10.2307/2373350
[8] K. Thomas [8] Ergodic theory of G-spaces. (Thesis.) University of Warwick, Coventry, 1969.
[9] R. Peleg [9] Some extensions of weakly-mixing flows . (To appear.) · Zbl 0213.50502 · doi:10.1007/BF02771683
[10] J.L. Kelley [10] General Topology . Van Nostrand, New York, 1955. · Zbl 0066.16604
[11] V.A. Rohlin [11] Selected topics from the metric theory of dynamical systems . Uspehi Mat. Nauk 4.2 (1949) 57-128.(Amer. Math. Soc. Transl. (2) 49 (1966) 171-240.) · Zbl 0185.21802 · doi:10.1090/trans2/049/09
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.