×

Lineare Optimierung in unendlichdimensionalen Vektorräumen. (German) Zbl 0243.90020


MSC:

90C05 Linear programming
52A40 Inequalities and extremum problems involving convexity in convex geometry
52A05 Convex sets without dimension restrictions (aspects of convex geometry)
65K05 Numerical mathematical programming methods
Full Text: DOI

References:

[1] Collatz, L., undW. Wetterling: Optimierungsaufgaben. S. 138. Berlin-Heidelberg-New York: Springer. 1966. · Zbl 0142.16602
[2] Hestenes, M. R.: Calculus of Variations and Optimal Control Theory. pp. 167–169. New York-London-Sydney: John Wiley and Sons, Inc. 1966. · Zbl 0173.35703
[3] Judin, D. B., undE. G. Golstein: Lineare Optimierung I. S. 249ff. Berlin: Akademie-Verlag. 1968.
[4] Klee, V. L.: Separation Properties of Convex Cones. Proc. Amer. Math. Soc.6, 313–318 (1955). · Zbl 0064.35602 · doi:10.1090/S0002-9939-1955-0068113-7
[5] Klee, V. L.: Separation and Support Properties of Convex Sets–A Survey, in:Balakrishnan, A. V. (ed.): Control Theory and the Calculus of Variations. pp. 235–303. New York-London: Academic Press. 1969.
[6] Klee, V. L.: Persönliche Mitteilung. 1971.
[7] Köthe, G.: Topologische lineare Räume, 2. Aufl. Berlin-Heidelberg-New York: Springer. 1966. · Zbl 0137.31301
[8] Krabs, W.: Lineare Optimierung in halbgeordneten Vektorräumen. Num. Math.11, 220–231 (1968). · Zbl 0262.90034 · doi:10.1007/BF02161844
[9] Lee, E. B., andL. Markus: Foundations of Optimal Control Theory. New York-London-Sydney: John Wiley and Sons, Inc. 1967. · Zbl 0159.13201
[10] Lempio, F.: Separation und Optimierung in linearen Räumen. Dissertation, Hamburg (1971). · Zbl 0243.90020
[11] Levinson, N.: A Class of Continuous Linear Programming Problems. J. Math. Anal. Appl.16, 73–83 (1966). · Zbl 0141.35601 · doi:10.1016/0022-247X(66)90187-9
[12] Van Slyke, R. M., andR. J.-B. Wets: A Duality Theory for Abstract Mathematical Programs with Applications to Optimal Control Theory. J. Math. Anal. Appl.22, 679–706 (1968). · Zbl 0157.16004 · doi:10.1016/0022-247X(68)90206-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.