zbMATH — the first resource for mathematics

Optimization of the flow through networks with gains. (English) Zbl 0243.90048

90C35 Programming involving graphs or networks
90B10 Deterministic network models in operations research
Full Text: DOI
[1] C. Berge,Théorie des graphes et ses applications (Dunod, Paris, 1958) p. 29.
[2] C. Berge and A. Ghonile-Houri,Programmes jeux et reseaux de transport (Dunod, Paris, 1962) p. 122. · Zbl 0111.17302
[3] P. Broise, P. Huard and J. Sentenac,Décomposition des programmes mathématiques, Monographies de recherche opérationnelle (Dunod, Paris, 1967).
[4] M. Gondran, Oral communication.
[5] W.S. Jewell, ”Optimal flow through networks with gains,” (Interim technical report no.8, Massachussetts Institute of Technology, Cambridge, Mass., 1958).Operations Research 10 (1962) 476–499. · Zbl 0109.38203 · doi:10.1287/opre.10.4.476
[6] E.L. Johnson, ”Networks and basic solutions,”Operations Research 14 (1966) 619–623. · doi:10.1287/opre.14.4.619
[7] E.L. Johnson, ”Programming in networks and graphs,” ORC 65-1. University of California, Berkeley.
[8] D. Lacaze, ”Flot optimal dans les réseaux avec multiplicateurs,”Revue Française de Recherche Opérationnelle 37 (1965) 271–293.
[9] J.F. Maurras, ”Méthode primale d’optimisation du flot dans un réseau avec multiplicateurs,” Note interne EDF (5.3.71).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.