×

Affine root systems and Dedekind’s \(\eta\)-function. (English) Zbl 0244.17005


MSC:

17B20 Simple, semisimple, reductive (super)algebras
11F22 Relationship to Lie algebras and finite simple groups

Citations:

Zbl 0271.01005
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Bourbaki, N.: Groupes et algèbres de Lie, Chapitres 4, 5, et 6. Paris: Hermann 1969. · Zbl 0205.06001
[2] Bruhat, F., Tits, J.: Groupes réductifs sur un corps local. Publ. Math. I.H.E.S., 41 (to appear). · Zbl 0636.20027
[3] Freudenthal, H., Vries, H. de: Linear Lie groups. New York: Academic Press 1969. · Zbl 0377.22001
[4] Hardy, G. H., Wright, E. M.: Introduction to the theory of numbers (4th edition). Oxford: Oxford University Press 1959. · Zbl 0020.29201
[5] Kostant, B.: The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group. Amer. J. Math.81, 973-1032 (1959). · Zbl 0099.25603
[6] Macdonald, I. G.: The Poincaré series of a Coxeter group (to appear).
[7] Winquist, L.: Elementary proof ofp(11m+6)?0 (mod 11). J. Comb. Theory6, 56-59 (1969). · Zbl 0241.05006
[8] Moody, R. V.: A new class of Lie algebras. J. Alg.10, 211-230 (1968). · Zbl 0191.03005
[9] ?: Euclidean Lie algebras. Can. J. Math.21, 1432-1454 (1969). · Zbl 0194.34402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.