Macdonald, I. G. Affine root systems and Dedekind’s \(\eta\)-function. (English) Zbl 0244.17005 Invent. Math. 15, 91-143 (1972). Reviewer: H. Reitberger Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 17 ReviewsCited in 178 Documents MSC: 17B20 Simple, semisimple, reductive (super)algebras 11F22 Relationship to Lie algebras and finite simple groups Citations:Zbl 0271.01005 PDF BibTeX XML Cite \textit{I. G. Macdonald}, Invent. Math. 15, 91--143 (1972; Zbl 0244.17005) Full Text: DOI EuDML OpenURL Digital Library of Mathematical Functions: §20.12(i) Number Theory ‣ §20.12 Mathematical Applications ‣ Applications ‣ Chapter 20 Theta Functions References: [1] Bourbaki, N.: Groupes et algèbres de Lie, Chapitres 4, 5, et 6. Paris: Hermann 1969. · Zbl 0205.06001 [2] Bruhat, F., Tits, J.: Groupes réductifs sur un corps local. Publ. Math. I.H.E.S., 41 (to appear). · Zbl 0636.20027 [3] Freudenthal, H., Vries, H. de: Linear Lie groups. New York: Academic Press 1969. · Zbl 0377.22001 [4] Hardy, G. H., Wright, E. M.: Introduction to the theory of numbers (4th edition). Oxford: Oxford University Press 1959. · Zbl 0020.29201 [5] Kostant, B.: The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group. Amer. J. Math.81, 973-1032 (1959). · Zbl 0099.25603 [6] Macdonald, I. G.: The Poincaré series of a Coxeter group (to appear). [7] Winquist, L.: Elementary proof ofp(11m+6)?0 (mod 11). J. Comb. Theory6, 56-59 (1969). · Zbl 0241.05006 [8] Moody, R. V.: A new class of Lie algebras. J. Alg.10, 211-230 (1968). · Zbl 0191.03005 [9] ?: Euclidean Lie algebras. Can. J. Math.21, 1432-1454 (1969). · Zbl 0194.34402 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.