×

zbMATH — the first resource for mathematics

Weak solutions for linear abstract differential equations in Banach spaces. (English) Zbl 0244.34048

MSC:
34G99 Differential equations in abstract spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Agmon, S, Elliptic boundary value problems, (1965), Van Nostrand Princeton, N. J., · Zbl 0151.20203
[2] Agmon, S; Douglis, A; Niremberg, L, Estimates near the boundary for solutions of elliptic partial differential equations, Comm. pure appl. math., 623-727, (1959) · Zbl 0093.10401
[3] Agmon, S, On the eigenfunctions and the eigenvalues of general elliptic boundary value problems, Comm. pure appl. math., 119-147, (1962) · Zbl 0109.32701
[4] Agmon, S; Niremberg, L, Properties of solutions of ordinary differential equations in Banach spaces, Comm. pure appl. math., 121-239, (1963) · Zbl 0117.10001
[5] Agranovich, M.S; Visik, M.I, Problèmes élliptiques avec paramètres et problèmes paraboliques de type général, Uspehi mat. nauk, Russian math. surveys, 19, 53-157, (1964)
[6] Baiocchi, C, Soluzioni ordinarie e generalizzate del problema di Cauchy per equazioni differenziali astratte lineari del secondo ordine negli spazi di Hilbert, Ricerche mat., 16, 27-95, (1967) · Zbl 0157.21602
[7] Baiocchi, C, Sulle equazioni differenziali astratte lineari del primo e secondo ordine negli spazi di Hilbert, Ann. mat. pura appl., 76, 233-304, (1967) · Zbl 0153.17202
[8] Bourbaki, N, Intégration, (), Chapters 1-4
[9] Da Prato, G, Équations opérationnelles dans LES espaces de Banach et applications, C. R. acad. sci., Somme di generatori infinitesimali di semigruppi di contrazione e equazioni di spazi di Banach, Ann. mat. pura appl., 78, 131-158, (1968) · Zbl 0152.34501
[10] Da Prato, G, Somma di generatori infinitesimali di semi-gruppi di contrazione di spazi di Banach riflessivi, Boll. un. mat. ital., 1, 138-141, (1968) · Zbl 0157.21503
[11] Da Prato, G, Équations opérationnelles dans LES espaces de Banach (cas analytique), C. R. acad. sci., Somma di generatori infinitesimali di semi-gruppi analitic, Rend. sem. mat. univ. Padova, 266, 151-161, (1968) · Zbl 0153.45302
[12] Da Prato, G, Somme de générateurs infinitesimaux de classe C0, Rend. accad. lincei, 45, 14-21, (1968) · Zbl 0165.48201
[13] Da Prato, G, Equazioni differenziali astratte, (1968), Editrice Tecnico Scientifica Pisa
[14] Dunford, N; Schwartz, J.J, ()
[15] Grisvard, P, Équations opérationnelles abstraites dans LES espaces de Banach et problèmes aux limites dans des ouverts cylindriques, Ann. scuola norm. sup. Pisa, 21, 307-347, (1967) · Zbl 0156.38302
[16] {\scP. Grisvard}, Cours Peccot.
[17] Ikawa, M, Mixed problems for hyperbolic equations of second order, J. math. soc. Japan, 20, 580-608, (1968) · Zbl 0172.14304
[18] Hille, E; Phillips, R.S, Functional analysis and semi-groups, Amer. math. soc. colloq., publ. 31, (1967)
[19] Lions, J.L, Une remarque sur LES applications du théorème de Hille-Yosida, J. math. soc. Japan, 9, 62-70, (1957) · Zbl 0078.08304
[20] Lions, J.L, Équations différentielles opérationnelles et problèmes aux limites, (1961), Springer-Verlag New York/Berlin · Zbl 0098.31101
[21] Lions, J.L, Equazioni differenziali astratte, (1963), Corso CIME
[22] Lions, J.L; Magenes, E, Problèmes aux limites non homogènes et applications, Vols. 1 and 2, (1968)
[23] Kato, T, Integration of the equation of evolution in a Banach space, J. math. soc. Japan, 5, 208-234, (1953) · Zbl 0052.12601
[24] Kato, T, On linear differential equations in Banach spaces, Comm. pure appl. math., 9, 479-486, (1956) · Zbl 0070.34602
[25] Kato, T, Abstract evolution equations of parabolic type in Banach and Hilbert spaces, Nagoya math. J., 19, 93-125, (1961) · Zbl 0114.06102
[26] Kato, T; Tanabe, H, On the abstract evolution equation, Osaka J. math., 14, 107-133, (1962) · Zbl 0106.09302
[27] Kato, T, Perturbation theory for linear operators, (1966), Springer-Verlag New York/Berlin · Zbl 0148.12601
[28] Marti, J.T, On integro-differential equations in Banach spaces, Pacific J. math., 20, 99-108, (1967) · Zbl 0149.35701
[29] Mazja, V.G; Sobolevskii, P.E, Uspehi mat. nauk, 17, (1962)
[30] Milman, D, On some criteria for the regularity of spaces of the type (B), Dokl. akad. nauk SSSR, 20, 20, (1938) · Zbl 0019.41601
[31] Mizohata, S, Quelques problèmes au bord, de type mixte, pour des équations hyperboliques, (), 23-60
[32] Phillips, R.S, Perturbation theory for semi-groups of linear operators, Trans. amer. math. soc., 74, 199-221, (1953) · Zbl 0053.08704
[33] Phillips, R.S, The adjoint semi-group, Pacific J. math., 269-285, (1955) · Zbl 0064.11202
[34] Riesz, F; Nagy, R, Functional analysis, (1955), Ungar New York
[35] Schwartz, L, ()
[36] Schwartz, L; Schwartz, L, Distributions à valeurs vectorielles, I et II, Ann. inst. Fourier (Grenoble), Ann. inst. Fourier (Grenoble), 8, 1-209, (1958) · Zbl 0089.09801
[37] Sobolevski, P.E, Parabolic type equations in banch space, Trudy moscov. math. občš., Amer. math. soc. transl., 49, 1-62, (1966)
[38] Stampacchia, G, Contributi alla regolarizzazione delle soluzioni dei problemi al contorno per equazioni del secondo ordine ellittiche, Ann. scuola norm. sup. Pisa, 12, 223-243, (1958) · Zbl 0082.09701
[39] Stampacchia, G, Le problème de Dirichlet pour LES équations elliptiques du second ordre à coefficients discontinus, Ann. inst. Fourier (Grenoble), 15, 189-258, (1965) · Zbl 0151.15401
[40] Tanabe, H, Evolution equations of parabolic type, (), 610-613 · Zbl 0104.34002
[41] Tanabe, H, On the equations of evolutions in a Banach space, Osaka J. math., 12, 365-613, (1960)
[42] Tanabe, H, A class of the equations of evolution in a Banach space, Osaka J. math., 12, 145-166, (1960) · Zbl 0098.31202
[43] Weinberger, H, Partial differential equations, (1965), Blaisdell Waltham, Mass., · Zbl 0127.04805
[44] Yosida, K, On the integration of the equations of evolution, J. fac. sci. univ. Tokyo sect. I, 9, 397-402, (1963) · Zbl 0201.18203
[45] Yosida, K, Functional analytic, (1965), Springer-Verlag New York/Berlin · Zbl 0126.11504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.