×

Existence theorems for equations of Hammerstein type. (English) Zbl 0244.47047


MSC:

47J05 Equations involving nonlinear operators (general)
45G10 Other nonlinear integral equations
47H05 Monotone operators and generalizations
Full Text: DOI

References:

[1] Amann H., Math. Zeitschr pp 175– (1969) · Zbl 0176.45604 · doi:10.1007/BF01113284
[2] Amann H., J. Math. Mech. 19 pp 143– (1969)
[3] Amann H., Math, Ann 186 pp 334– (1970) · Zbl 0185.22202 · doi:10.1007/BF01350597
[4] Amann H., Math,, to appear 186 (1970)
[5] Browder F.E., Bull. Amer. Math. Soc 75 pp 1347– (1969) · Zbl 0193.11204 · doi:10.1090/S0002-9904-1969-12420-1
[6] Dolph, C.L. and Minty, G.J. 1964.On non-linear integral equations of Hammerstein type, 99–154. Madison: Univ,of Wisconsin Press. · Zbl 0123.29603
[7] Kolodner J.J., Math. Mech 13 pp 701– (1964)
[8] Krasnosel’skii M.A., Topological Methods in the Theory of Nonlinear Integral Equations (1964)
[9] Yainberg M.M., Variational Methods for the Study of Nonlinear Operators (1964)
[10] Yosida K., Functional Analysis (1965) · Zbl 0126.11504
[11] Zaanen A.C., Integration (1967) · Zbl 0175.05002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.