×

zbMATH — the first resource for mathematics

Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topological vector spaces. (English) Zbl 0244.47049

MSC:
47J05 Equations involving nonlinear operators (general)
47H10 Fixed-point theorems
47A53 (Semi-) Fredholm operators; index theories
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Dolph, C.L; Minty, G.J, On nonlinear integral equations of the Hammerstein type, “integral equations”, (), 99-154 · Zbl 0123.29603
[2] Ehrmann, H; Ehrmann, H, Existenzsätze für die Lösungen gewisser nichtlinearer randwertaufgaben, Z. angew. math. mech., Abh. Deutsch akad. wiss. Berlin kl. math. phys. tech., 45, 157-167, (1965) · Zbl 0219.34024
[3] Leray, J; Schauder, J, Topologie et équations fonctionnelles, Ann. sci. ecole norm. sup., 51, 45-78, (1934) · JFM 60.0322.02
[4] Rothe, E, The theory of topological order in some linear topological spaces, Iowa state college J. sci., 13, 373-390, (1939) · JFM 65.0499.01
[5] Leray, J, La théorie des points fixes et ses applications en analyse, (), 202-208
[6] Nagumo, M, Degree of mapping in convex linear topological spaces, Amer. J. math., 73, 497-511, (1951) · Zbl 0043.17801
[7] Browder, F.E, Nonlinear functional equations in locally convex spaces, Duke math. J., 24, 569-589, (1957)
[8] Altman, M, An extension to locally convex spaces of Borsuk’s theorem in antipodes, Bull. acad. polon. sci. Sér. sci. math. astronom. phys., 6, 293-295, (1958) · Zbl 0086.10201
[9] Altman, M, Continuous transformations of open sets in locally convex spaces, Bull. acad. polon. sci. ser. sci. math. astronom. phys., 6, 297-301, (1958) · Zbl 0083.10303
[10] Klee, V; Klee, V, Leray-Schauder theory without local convexity, Math. ann., Math. ann., 145, 464-465, (1962)
[11] Smale, S, An infinite dimensional version of Sard’s theorem, Amer. J. math., 87, 861-866, (1965) · Zbl 0143.35301
[12] Eells, J, Fredholm structures, (), 62-85
[13] Svarc, A.S, The homotopic topology of Banach spaces, Soviet math. dokl., 5, 57-59, (1964) · Zbl 0181.39904
[14] Geba, K, Algebraic topology methods in the theory of compact fields in Banach spaces, Fund. math., 54, 177-209, (1964) · Zbl 0128.36003
[15] Geba, K; Granas, A; Geba, K; Granas, A; Geba, K; Granas, A; Geba, K; Granas, A, Algebraic topology in linear normed spaces, Bull. acad. polon. sci. Sér. math. astronom. phys. I, Bull. acad. polon. sci. Sér. math. astronom. phys. II, Bull. acad. polon. sci. Sér. math. astronom. phys. III, Bull. acad. polon. sci. Sér. math. astronom. phys. IV, 15, 145-152, (1965) · Zbl 0158.15101
[16] Geba, K, Fredholm σ-proper maps of Banach spaces, Fund. math., 64, 341-513, (1969) · Zbl 0191.21802
[17] Ferner, C, Analytische theorie des abbildungsgrades für abbildungen in banachraümen, Math. nachr., 48, 279-290, (1971) · Zbl 0192.49002
[18] Browder, F.E, Topology and nonlinear functional equations, Studia math., 31, 189-204, (1968) · Zbl 0176.45303
[19] Browder, F.E; Nussbaum, R.D, The topological degree for noncompact nonlinear mappings in Banach spaces, Bull. amer. math. soc., 74, 671-676, (1968) · Zbl 0164.17002
[20] Browder, F.E; Petryshyn, W.V, Approximation methods and the generalized topological degree for nonlinear mappings in Banach spaces, J. functional anal., 3, 217-245, (1969) · Zbl 0177.42702
[21] Browder, F.E, Local and global properties of nonlinear mappings in Banach spaces, (), 13-35 · Zbl 0188.20802
[22] Nussbaum, R.D, Degree theory for local condensing maps, J. math. anal. appl., 37, 741-766, (1972) · Zbl 0232.47062
[23] Nussbaum, R.D, Estimates for the number of solutions of operator equations, Applicable anal., 1, 183-200, (1971) · Zbl 0235.47035
[24] \scR. D. Nussbaum, The fixed-point index for local condensing maps, Ann. Mat. Pura Appl., to appear. · Zbl 0226.47031
[25] Frum-Kretkov, R.L, Mappings into a sphere of a Banach space, Soviet math. dokl., 8, 1004-1006, (1967) · Zbl 0186.46904
[26] Webb, J.R.L, Remarks on k-set contractions, Boll. un. mat. ital., 4, 614-629, (1971) · Zbl 0219.47058
[27] Caccioppoli, R; Caccioppoli, R, Sulle corrispondenze funzionali inverse diramate: teoria generale e applicazioni ad alcune equazioni funzionali non lineari e al problema di plateau, Atti. accad. naz. lincei, rend. cl. sci. fis. mat. natur., Atti. accad. naz. lincei, rend. cl. sci. fis. mat. natur., 24, 416-421, (1946) · JFM 63.0362.02
[28] Cronin, J, Branch point of solutions of equations in Banach spaces, Trans. amer. math. soc., 69, 208-231, (1950) · Zbl 0041.23701
[29] Cronin, J, A definition of degree for certain mappings in Hilbert space, Amer. J. math., 73, 763-772, (1951) · Zbl 0044.11402
[30] Cesari, L, Functional analysis and Galerkin’s method, Michigan math. J., 11, 385-418, (1964) · Zbl 0192.23702
[31] Williams, S.A, A connection between the cesari and Leray-Schauder methods, Michigan math. J., 15, 441-448, (1968) · Zbl 0174.45601
[32] \scJ. W. Thomas and T. D. O’Neil, On the equivalence of multiplicity and the generalized topological degree, Trans. Amer. Math. Soc., to appear. · Zbl 0217.19803
[33] Poincaré, H, LES méthodes nouvelles de la mécanique céleste, (1905), Paris · JFM 25.1847.03
[34] Lyapunov, A.M; Lyapunov, A.M; Lyapunov, A.M; Lyapunov, A.M, Sur LES figures d’équilibre peu différentes des ellipsoïdes d’une masse liquide homogène dotée d’un mouvement de rotation, Zap. akad. nauk st. petersbourg, Zap. akad. nauk st. petersbourg, Zap. akad. nauk st. petersbourg, Zap. akad. nauk st. petersbourg, 1-112, (1914)
[35] Schmidt, E, Zur theorie der linearen und nichtlinearen integralgleichungen. 3. teil. uber die auflösung der nichtlinearen integralgleichungen und die verzweigung ihrer Lösungen, Math. ann., 65, 370-399, (1908) · JFM 39.0399.03
[36] Shimizu, T, Analytic operations and analytic operational equations, Math. Japan, 1, 36-40, (1948) · Zbl 0041.23702
[37] Bartle, R.G, Singular points of functional equations, Trans. amer. math. soc., 75, 366-384, (1953) · Zbl 0051.34502
[38] Vainberg, M.M; Trenogin, V.A, The methods of Lyapunov and Schmidt in the theory of nonlinear equations and their further development, Russ. math. surveys, 17, 1-60, (1962) · Zbl 0117.31904
[39] Vainberg, M.M; Aizengendler, P.G, The theory and methods of investigation of branch points of solutions, (), 1-72 · Zbl 0186.21002
[40] Nirenberg, L, Functional analysis, New York university, lecture notes, (1960-1961)
[41] Cesari, L, Functional analysis and periodic solutions of nonlinear differential equations, (), 149-187
[42] Locker, J, An existence analysis for nonlinear equations in Hilbert space, Trans. amer. math. soc., 128, 403-413, (1967) · Zbl 0156.15802
[43] Brancroft, S; Hale, J.K; Sweet, D, Alternative problems for nonlinear functional equations, J. differential equations, 4, 40-56, (1968) · Zbl 0159.20001
[44] Cesari, L, Functional analysis and differential equations, (), 143-155
[45] Cesari, L, Functional analysis and boundary value problems, (), 178-194, Berlin
[46] Hale, J.K, Ordinary differential equations, (1969), Wiley-Interscience New York · Zbl 0186.40901
[47] Hale, J.K, Applications of alternative problems, () · Zbl 0382.34013
[48] Mawhin, J, Équations intégrales et solutions périodiques des systèmes différentiels non linéaires, Acad. R. belg. bull. cl. sci., 55, 934-947, (1969) · Zbl 0193.06103
[49] Mawhin, J, Periodic solutions of nonlinear functional differential equations, J. differential equations, 10, 240-261, (1971) · Zbl 0223.34055
[50] Mawhin, J, Équations non linéaires dans LES espaces de Banach, () · Zbl 0235.47038
[51] Robertson, A.P; Robertson, W.J, Topological vector spaces, (1966), Cambridge University Press London · Zbl 0153.16203
[52] \scL. Schwartz, “Analyse, Topologie Générale et Analyse Fonctionnelle,” Hermann, Paris, 19. · Zbl 0206.06301
[53] Schwartz, J, Nonlinear functional analysis, (1969), Gordon and Breach New York · Zbl 0203.14501
[54] Nomizu, K, Fundamentals of linear algebra, (1966), McGraw-Hill New York · Zbl 0148.01601
[55] Nirenberg, L, An application of generalized degree to a class of nonlinear problems, (), 57-74
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.