Dailey, J. W.; Pierce, J. G. Error bounds for the Galerkin method applied to singular and nonsingular boundary value problems. (English) Zbl 0244.65075 Numer. Math. 19, 266-282 (1972). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 9 Documents MSC: 65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs 65N15 Error bounds for boundary value problems involving PDEs 35J35 Variational methods for higher-order elliptic equations 35J40 Boundary value problems for higher-order elliptic equations PDFBibTeX XMLCite \textit{J. W. Dailey} and \textit{J. G. Pierce}, Numer. Math. 19, 266--282 (1972; Zbl 0244.65075) Full Text: DOI EuDML References: [1] Bramble, J. H., Hilbert, S. R.: Bounds for a class of linear functionals with applications to Hermite interpolation. Numer. Math.16, 362-369 (1971). · Zbl 0214.41405 · doi:10.1007/BF02165007 [2] Ciarlet, P. G., Natterer, F., Varga, R. S.: Numerical methods of high-order accuracy for singular nonlinear boundary value problems. Numer. Math.15 (1970). · Zbl 0211.19103 [3] Ciarlet, P. G., Schultz, M. H., Varga, R. S.: Numerical methods of high-order accuracy for nonlinear boundary value problems. I. One dimensional problem. Numer. Math.9, 394-430 (1967). · Zbl 0155.20403 · doi:10.1007/BF02162155 [4] Ciarlet, P. G., Schultz, M. H., Varga, R. S.: Numerical methods of high-order accuracy for nonlinear boundary value problems. V. Monotone operator theory. Numer. Math.13, 51-77 (1969). · Zbl 0181.18603 · doi:10.1007/BF02165273 [5] Collatz, L.: The numerical treatment of differential equations, 3rd. ed. Berlin-Göttingen-Heidelberg: Springer 1960. · Zbl 0086.32601 [6] Dailey, J. W.: Approximation by spline-type functions and related problems. Dissertation, Case Western Reserve University, September, 1969. [7] Hedstrom, G. W., Varga, R. S.: Application of Besov spaces to spline approximation. J. Approx. Theory4, 295-327 (1971). · Zbl 0218.41001 · doi:10.1016/0021-9045(71)90018-9 [8] Hulme, B. L.: Interpolation by Ritz approximation. J. Math. Mech.18, 337-342 (1968). · Zbl 0165.38601 [9] Jamet, P.: Numerical methods and existence theorems for singular linear boundaryvalue problems, Doctoral Thesis, University of Wisconsin, 1967. [10] Jamet, P.: On the convergence of finite-difference epproximations to one-dimensional singular boundary-value problems. Numer. Math.14, 355-378 (1970). · Zbl 0179.22103 · doi:10.1007/BF02165591 [11] Jerome, J. W., Pierce, J. G.: On splines associated with singular self-adjoint differential operators. J. Approx. Theory5, 15-40 (1972). · Zbl 0228.41003 · doi:10.1016/0021-9045(72)90027-5 [12] Jerome, J. W., Schumaker, L. L.: OnLg-splines. J. Approx. Theory2, 29-49 (1969). · Zbl 0172.34501 · doi:10.1016/0021-9045(69)90029-X [13] Jerome, J. W., Varga, R. S.: Generalizations of spline functions and applications to nonlinear boundary value and eigenvalue problems. Theory and applications of spline functions (T. N. E. Greville, ed.), p. 103-155. New York: Academic Press 1969. · Zbl 0188.13004 [14] Kamke, E. A.: Über die definiten selbstadjungierten Eigenwertaufgaben bei gewöhnlichen linearen Differentialgleichungen. IV. Math. Z.48, 67-100 (1942). · JFM 68.0197.01 · doi:10.1007/BF01180005 [15] Nitsche, J.: Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens. Numer. Math.11, 346-348 (1968). · Zbl 0175.45801 · doi:10.1007/BF02166687 [16] Nitsche, J.: Verfahren von Ritz und Spline-Interpolation bei Sturm-Liouville-Randwertproblemen. Numer. Math.13, 260-265 (1969). · Zbl 0181.18204 · doi:10.1007/BF02167557 [17] Perrin, F. M., Price, H. S., Varga, R. S.: On higher-order numerical methods for nonlinear two-point boundary value problems. Numer. Math.13, 180-198 (1969). · Zbl 0183.44501 · doi:10.1007/BF02163236 [18] Pierce, J. G., Varga, R. S.: Higher order convergence results for the Rayleigh-Ritz method applied to eigenvalue problems. II. Improved error bounds for eigenfunctions (to appear). · Zbl 0223.65080 [19] Schultz, M. H.: Multivariate spline functions and elliptic problems, approximation with special emphasis on spline functions (ed. I. J. Schoenberg), p. 279-347. New York: Academic Press 1969. [20] Schultz, M. H., Varga, R. S.: L-splines. Numer. Math.10, 345-369 (1967). · Zbl 0183.44402 · doi:10.1007/BF02162033 [21] Strang, Gilbert: Approximation in the finite element method (to appear). · Zbl 0221.65174 [22] Strang, Gilbert, Fix, George: An analysis of the finite element method. Prentice-Hall, Inc. (to appear). · Zbl 0272.65099 [23] Swartz, B. K., Varga, R. S.: Error bounds for spline andL-spline interpolation. J. Approx. Theory (to appear). · Zbl 0242.41008 [24] Varga, R. S.: Functional analysis and approximation theory in numerical analysis. SIAM publication 1971 (to appear). · Zbl 0226.65064 [25] Yosida, K.: Functional analysis. New York: Academic Press 1965. · Zbl 0126.11504 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.