×

zbMATH — the first resource for mathematics

On the coding theorem for decomposable discrete information channels. I, II. (English) Zbl 0244.94006
Kybernetika, Praha 7, 109-124, 230-255 (1971).

MSC:
94B99 Theory of error-correcting codes and error-detecting codes
28D05 Measure-preserving transformations
94A15 Information theory (general)
Full Text: EuDML
References:
[1] A. I. Khinchin: Mathematical foundations of information theory. Dover Publications, New York 1957. · Zbl 0088.10404
[2] A. I. Khinchin: Mathematical foundations of information theory. Dover Publications, New York 1957. · Zbl 0088.10404
[3] J. Nedoma: Capacity of a discrete channel. Transact. First Prague Conf. on Inform. Theory etc. Prague 1957, 143-181. · Zbl 0088.10701
[4] J. Nedoma: Capacity of a discrete channel. Transact. First Prague Conf. on Inform. Theory etc. Prague 1957, 143-181. · Zbl 0088.10701
[5] J. Nedoma: On non-ergodic channels. Transact. Second Prague Conf. on Inform. Theory etc. Prague 1960, 363-395. · Zbl 0096.11101
[6] J. Nedoma: On non-ergodic channels. Transact. Second Prague Conf. on Inform. Theory etc. Prague 1960, 363-395. · Zbl 0096.11101
[7] K. R. Parthasarathy: Effective entropy rate and transmission of information through channels with additive random noise. Sankhya A 25 (1963), 75-84. · Zbl 0119.34003
[8] K. R. Parthasarathy: Effective entropy rate and transmission of information through channels with additive random noise. Sankhya A 25 (1963), 75-84. · Zbl 0119.34003
[9] V. A. Rohlin: New progress in the theory of transformation with invariant measure. (in Russian). Usp. Mat. Nauk 15 (1960), 3-26.
[10] V. A. Rohlin: New progress in the theory of transformation with invariant measure. (in Russian). Usp. Mat. Nauk 15 (1960), 3-26.
[11] K. Winkelbauer: Channels with finite past history. Transact. Second Prague Conf. on Inform. Theory etc. Prague 1960, 685-831. · Zbl 0161.16904
[12] K. Winkelbauer: Channels with finite past history. Transact. Second Prague Conf. on Inform. Theory etc. Prague 1960, 685-831. · Zbl 0161.16904
[13] K. Winkelbauer: On discrete information sources. Transact. Third Prague Conf. on Inform. Theory etc. Prague 1964, 765-830. · Zbl 0126.35702
[14] K. Winkelbauer: On discrete information sources. Transact. Third Prague Conf. on Inform. Theory etc. Prague 1964, 765-830. · Zbl 0126.35702
[15] K. Winkelbauer: Axiomatic definition of channel capacity and entropy rate. Transact. Fourth Prague Conf. on Inform. Theory etc. Prague 1967, 661-705.
[16] K. Winkelbauer: Axiomatic definition of channel capacity and entropy rate. Transact. Fourth Prague Conf. on Inform. Theory etc., Prague 1967, 661-705.
[17] K. Winkelbauer: On the asymptotic rate of non-ergodic information sources. Kybernetika 6 (1970), 2, 127-148. · Zbl 0245.94013 · eudml:28061
[18] K. Winkelbauer: On the asymptotic rate of non-ergodic information sources. Kybernetika 6 (1970), 2, 127-148. · Zbl 0245.94013 · eudml:28061
[19] K. Winkelbauer: On the regularity condition for decomposable communication channels. Kybernetika 7 (1971), 4 · Zbl 0244.94007 · eudml:28382
[20] J. Wolfowitz: Coding theorems of information theory. Second Berlin 1964. · Zbl 0132.39704
[21] P. Billingsley: Ergodic Theory and Information. New York 1965. · Zbl 0141.16702
[22] J. Wolfowitz: Coding theorems of information theory. Second Berlin 1964. · Zbl 0132.39704
[23] J. Nedoma: Über die Ergodizität und r-Ergodizität stationärer Wahrscheinlichkeitsmasse. Z. Wahrscheinlichkeitstheorie 2 (1963), 90-97. · Zbl 0122.14903 · doi:10.1007/BF00531962
[24] K. R. Parthasarathy: On the Integral Representation of the Rate of Transmission of a Stationary Channel. Illinois Journ. Math. 2 (1961), 299-305. · Zbl 0100.33903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.