×

Invariant sets of morphisms on projective and affine number spaces. (English) Zbl 0245.12003


MSC:

11R09 Polynomials (irreducibility, etc.)
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] {\scK. K. Kubota}, Note on a conjecture of W. Narkiewicz, J. Number Theory, to appear.
[2] {\scK. K. Kubota}, Factors of polynomials under composition, J. Number Theory, to appear. · Zbl 0261.12005
[3] Lang, S; Neron, A, Rational points of abelian varieties over function fields, Amer. J. math., 81, 95-118, (1959) · Zbl 0099.16103
[4] {\scD. Mumford}, “Introduction to Algebraic Geometry,” Harvard notes. · Zbl 0114.13106
[5] Narkiewicz, W, On polynomial transformations, Acta arith., 7, 241-249, (1962) · Zbl 0125.00901
[6] Narkiewicz, W, On polynomial transformation II, Acta arith., 8, 11-19, (1962)
[7] Narkiewicz, W, Remark on rational transformations, (), 139-142 · Zbl 0122.01903
[8] Narkiewicz, W, On transformations by polynomials in two variables, (), 53-58 · Zbl 0126.03204
[9] Narkiewicz, W, On transformations in two variables II, (), 101-106 · Zbl 0132.00803
[10] Narkiewicz, W, On polynomial transformations in several variables, Acta arith., 11, 163-168, (1965) · Zbl 0148.41801
[11] Samuel, P, Méthodes d’algèbre abstraite en Géométrie algébrique, () · Zbl 0146.16901
[12] van der Waerden, B.L, Moderne algebra, (1937), Springer Verlag Berlin · Zbl 0016.33902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.