×

zbMATH — the first resource for mathematics

Integral operators with kernels satisfying Carleman and Ahiezer conditions. I. (English. Russian original) Zbl 0245.47049
Sib. Math. J. 12(1971), 750-760 (1972); translation from Sib. Mat. Zh. 12, 1041-1055 (1971).

MSC:
47Gxx Integral, integro-differential, and pseudodifferential operators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] P. Halmos, Measure Theory, D. Van Nostrand, New York (1950).
[2] T. Carleman, Sur les Equations Integrales Singulieres √† Noyau et Symetrique, Uppsala (1923). · JFM 49.0272.01
[3] N. I. Akhieser and I. M. Glasmann, Theorie der linearen Operatoren im Hilbert-Raum, Akademie Verlag, Berlin (1968). · Zbl 0174.44103
[4] M. Schreiber, ?Semi-Carleman operators,? Acta Sci. Math.,24, No. 1-2 82-87 (1963). · Zbl 0122.34405
[5] B. Misra, D. Speiser, and G. Targonski ?Integral operators in the theory of scattering,? Helv. Phys. Acta,36, No. 7, 963-980 (1963). · Zbl 0134.45803
[6] N. I. Akhiezer, ?Integral operators with Carleman kernels,? Usp. Matem. Nauk,2, No. 5, 93-132 (1947).
[7] V. B. Korotkov, ?Classification and characteristic properties of Carleman operators,? Dokl. Akad. Nauk SSSR,190, No. 6, 1274-1277 (1970). · Zbl 0208.16901
[8] R. Phillips, ?On weakly compact subsets of a Banach space,? Amer. J. Math.,65, 108-136 (1943). · Zbl 0063.06212 · doi:10.2307/2371776
[9] V. I. Rybakov, ?On vector measures,? Izv. Vuzov. Matem.,12, 92-101 (1968).
[10] E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc. Coll. Publ., Vol. 31, New York (1957). · Zbl 0078.10004
[11] V. B. Korotkov, ?On integral operators with Carleman kernels,? Dokl. Akad. Nauk SSSR,165, No. 4 748-751 (1965). · Zbl 0186.20601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.