×

On operators factorizable through L\(_p\) space. (English) Zbl 0246.47040


MSC:

47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)

References:

[1] J. KRIVINE , D. DACUNHA-CASTELLE , - Ultraproduites des espaces de Banach , Studia Math. (to appear). · Zbl 0275.46023
[2] J. COHEN , - A characterization of inner product spaces using 2 - absolutely summing operators , Studia Math. 38 ( 1969 ), p. 271-276. Article | MR 43 #6707 | Zbl 0203.43301 · Zbl 0203.43301
[3] A. GROTHIENDIECK , - Resume de la theorie metrique des produites tensorieles topologiques , Bol. Soc. Mat. Sao Paulo 8 ( 1956 ), p. 1-79. Zbl 0074.32303 · Zbl 0074.32303
[4] J. HOLUB , - A characterization of subspaces of Lp , Studia Math. (to appear). Zbl 0228.46021
[5] S. KWAPIEN , - On a theorem of L. Schwartz and its applications to absolutely summing operators , Studia Math. 38 ( 1969 ), p. 193-201. Article | MR 43 #3822 | Zbl 0211.43505 · Zbl 0211.43505
[6] S. KWAPIEN , - A linear topological characterization of inner product spaces , Studia Math. 38 ( 1969 ), p. 277-278. Article | MR 43 #2478 | Zbl 0203.43302 · Zbl 0203.43302
[7] J. LINDENSTRAUSS , A. PELCZYNSKI , - Absolutely summing operators in \alpha p spaces and their applications , Studia Math. 29 ( 1968 ), p. 275-326. Article | MR 37 #6743 | Zbl 0183.40501 · Zbl 0183.40501
[8] A. PERRSON , - On some properties of p nuclear and p integral operators , 33 ( 1969 ), p. 213-222, Studia Math. Article | MR 40 #769 | Zbl 0184.17903 · Zbl 0184.17903
[9] A. PERRSON , A. PIETSCH , - p nuklear und p integral operators , Studia Math. 33 ( 1962 ). Article | Zbl 0189.43602 · Zbl 0189.43602
[10] A. PIETSCH , - p-absolutely summing operators in Lr spaces , (to appear). · Zbl 0249.47020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.