×

zbMATH — the first resource for mathematics

Enumeration des graphes planaires à l’aide des séries formelles en variables non commutatives. (French) Zbl 0247.05140

MSC:
05C30 Enumeration in graph theory
94B99 Theory of error-correcting codes and error-detecting codes
05C10 Planar graphs; geometric and topological aspects of graph theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bourbaki, N., Algèbre, 1, (1970), Hermann Paris
[2] Brown, W.G., Enumeration of triangulations of the disk, Proc. London math. soc., 14, 746-768, (1964) · Zbl 0134.19503
[3] Brown, W.G., On the existence of square roots in certain rings of power series, Math. ann., 158, 82-89, (1965) · Zbl 0136.02503
[4] Choffrut, C., Séminaire schützenberger lentin-nivat, (1970-1971), Secrétar. Math Paris
[5] Cori, R., Graphes planaires et systémes de parenthéses, Thèse de 3e cycle, (1969), Paris
[6] Cori, R., Planar maps and bracketting systems in combinatorial structures and their applications, (1970), Gordon Breach New York
[7] Cori, R., Une équation liée à un probléme combinatoire dans une algébre non commutative, C.R. acad. sci. Paris, 271 A, 771-773, (1970) · Zbl 0211.02504
[8] R. Cori, Sur la rationnalité de certaines séries géneratrices, à paraitre.
[9] Dieudonné, J., Eléments d’analyse, () · Zbl 0326.22001
[10] Eilenberg, S., Algébre catégorique et théorie des automates, Cours donné à Paris à l’institut H. Poincaré, (1967), rédigé par R. Roussarie, miméographié
[11] Elgot, C.C.; Mezei, J.E., On relations defined by generalized finite automata, IBM J. res. develop., 9, 47-68, (1965) · Zbl 0135.00704
[12] Fliess, M., Transductions algébriques, Rev. franc. inform. rech. opérationnelle, 4, 109-125, (1970), R-1 · Zbl 0219.68038
[13] Fliess, M., Séries reconnaissables, rationnelles et algébriques, Bull. sci. math., 94, 231-239, (1970) · Zbl 0219.16003
[14] Ginsburg, S., The mathematical theory of context-free lamguages, (1966), McGraw-Hill New York · Zbl 0184.28401
[15] Gross, M., Applications géométriques des langages formels, I.C.C. bull., 5, 141-168, (1966)
[16] Harary, F.; Prins, G.; Tutte, W.T., The number of plane trees, Indag. math., 26, 319-329, (1964) · Zbl 0126.19002
[17] Jacques, A., Constellations et graphes topologiques, (), 657-672 · Zbl 0213.25901
[18] Klarner, D.A., Correspondence between plane trees and binary sequences, J. combinatorial theory, 9, 401-411, (1970) · Zbl 0205.54702
[19] Kuich, W., Languages and the enumeration of planted plane trees, Indag. math., 32, 268-280, (1970) · Zbl 0202.55901
[20] Kuich, W., ()
[21] Kuich, W., A context-free language and enumeration problems on infinite trees and di graphs, J. combinatorial theory, 10, 135-142, (1971) · Zbl 0211.02001
[22] Lehmann, A., A bijective census of rooted planar maps, Comm. Ontario math. conf., (1970), (notes non-publiées)
[23] Mullin, R.C., The enumeration of rooted triangular maps, Am. math. monthly, 71, 1007-1010, (1964) · Zbl 0127.39204
[24] Mullin, R.C., On counting rooted triangular maps, Can. J. math., 17, 373-382, (1965) · Zbl 0142.41203
[25] Nivat, M., Transductions de langages de chomsky, Ann. inst. Fourier, 18, 339-456, (1968), Fasc. 1 · Zbl 0313.68065
[26] Richard, J., Sur certaines équations intervenant dans l’énumération des graphes planaires, () · Zbl 0265.05116
[27] Richard, J., Sur un type d’équations liées à certains problémes combinatoires, C.R. acad. sci. Paris, 272 A, 203-206, (1971) · Zbl 0211.02601
[28] Schutzenberger, M.P., On the definition of a family of automata, Inform. control, 4, 245-270, (1961) · Zbl 0104.00702
[29] Schutzenberger, M.P., On a theorem of R. jungen, Proc. am. math. soc., 13, 885-890, (1962) · Zbl 0107.03102
[30] Tutte, W.T., A census of planar triangulations, Can. J. math., 14, 21-38, (1962) · Zbl 0103.39603
[31] Tutte, W.T., A census of planar maps, Can. J. math., 15, 249-271, (1963) · Zbl 0115.17305
[32] Tutte, W.T., On the enumeration of planar maps, Bull. am. math. soc., 74, 64-74, (1968) · Zbl 0157.31101
[33] Whittaker, F.T.; Watson, G.N., A course of modern analysis, (1940), Cambridge Univ. Press Cambridge
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.