×

Free products in varieties of lattice-ordered groups. (English) Zbl 0247.06022


MSC:

06F15 Ordered groups
06F20 Ordered abelian groups, Riesz groups, ordered linear spaces
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] K. Baker: Free vector lattices. Canad. Jour. Math., 20 (1968), pp. 58 - 66. · Zbl 0157.43401 · doi:10.4153/CJM-1968-008-x
[2] S. Bernau: Free abelian lattice groups. Math. Ann., 180 (1969,) pp. 48 - 59. · Zbl 0157.36801 · doi:10.1007/BF01350085
[3] P. Cohn: Universal Algebra. Harper & Row (1965). · Zbl 0141.01002
[4] [4J P. Conrad: Free lattice-ordered groups. preprint. · Zbl 0213.31502
[5] L. Fuchs: Partially Ordered Algebraic Systems. Pergamon Press (1963). · Zbl 0137.02001
[6] J. Martinez: Tensor products of partially ordered groups. preprint. · Zbl 0242.06012 · doi:10.2140/pjm.1972.41.771
[7] B. Mitchell: Theory of Categories. Academic Press (1965). · Zbl 0136.00604 · doi:10.1007/BF01398232
[8] E. Weinberg: Free lattice-ordered abelian groups. Math. Ann., 151 (1963), pp. 187-199. · Zbl 0114.25801 · doi:10.1007/BF01398232
[9] E. Weinberg: Free lattice-ordered abelian groups II. Math. Ann., 159 (1965), pp. 217-222. · Zbl 0138.26201 · doi:10.1007/BF01362439
[10] S. Wolfenstein: Valeurs normales dans un groupe réticulé. Accad. Naz. dei Lincei, Rend. délia Classe die Scienze fisiche, matematiche e naturali, Serie VIII, vol. XLIV, fasc. 3, Mar. 1968. · Zbl 0174.06003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.