×

zbMATH — the first resource for mathematics

Universal approximation by hill functions. (English) Zbl 0247.41011

MSC:
41A30 Approximation by other special function classes
41A25 Rate of convergence, degree of approximation
33E99 Other special functions
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] I. Babuška: Approximation by hill functions. Comment. Math. Univ. Carolinae 11 (1970), 787-811. · Zbl 0215.46404 · eudml:16399
[2] I. Babuška: The finite element method for elliptic differential equations. Numerical solution of partial differential equations II (Proc. of SYNSPADE 1970), Academic Press, New York - London 1971, 69-106.
[3] I. Babuška: The rate of convergence for the finite element method. SIAM J. Numer. Anal. 5 (1971), 304-315. · Zbl 0232.65080 · doi:10.1137/0708031
[4] I. Babuška J. Segethova K. Segeth: Numerical experiments with finite element method I. Tech. Note BN-669, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, August 1970.
[5] W. Feller: An introduction to probability theory and its applications. Vol. 2, Wiley, New York 1966. · Zbl 0138.10207
[6] G. Fix G. Strang: Fourier analysis of the finite element method in Ritz-Galerkin theory. Studies in Appl. Math. 48 (1969), 265-273. · Zbl 0179.22501 · doi:10.1002/sapm1969483265
[7] I. M. GeVfand G. E. Silov: Generalized functions. Vol. 1 & 2, Gos. izd. fiz.-mat. lit., Moscow 1958
[8] F. Di Guglielmo: Construction d’approximations des espaces de Sobolev sur des reseaux en Simplexes. Calcolo 6 (1969), 279-331. · Zbl 0198.46206 · doi:10.1007/BF02576159
[9] J.-L. Lions E. Magenes: Problèmes aux limites non homogènes et applications. Vol. 1, Dunod, Paris 1968. · Zbl 0212.43801
[10] J. Nečas: Les méthodes directes en théorie des équations elliptiques. Academia, Prague 1967. · Zbl 1225.35003
[11] J. Segethova: Numerical construction of the hill functions. SIAM J. Numer. Anal., 9 (1972), 199-204. · Zbl 0243.65004 · doi:10.1137/0709018
[12] G. Strang: The finite element method and approximation theory. Numerical solution of partial diff’erential equations 11 (Proc. of SYNSPADE 1970), Academic Press, New York- London 1971, 547-583.
[13] G. Strang G. Fix: A Fourier analysis of the finite element variational method. to appear. · Zbl 0278.65116
[14] K. Yosida: Functional analysis. Academic Press, New York-London 1965. · Zbl 0126.11504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.